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Neutrons are valuable probes for various material samples across many areas of

research. Neutron imaging typically has a spatial resolution of larger than

20 mm, whereas neutron scattering is sensitive to smaller features but does not

provide a real-space image of the sample. A computed-tomography technique is

demonstrated that uses neutron-scattering data to generate an image of a

periodic sample with a spatial resolution of�300 nm. The achieved resolution is

over an order of magnitude smaller than the resolution of other forms of

neutron tomography. This method consists of measuring neutron diffraction

using a double-crystal diffractometer as a function of sample rotation and then

using a phase-retrieval algorithm followed by tomographic reconstruction to

generate a map of the sample’s scattering-length density. Topological features

found in the reconstructions are confirmed with scanning electron micrographs.

This technique should be applicable to any sample that generates clear neutron-

diffraction patterns, including nanofabricated samples, biological membranes

and magnetic materials, such as skyrmion lattices.

1. Introduction

Neutron imaging and scattering provide a unique probe for a

wide variety of materials, motivating the construction of a

growing number of neutron-imaging and -scattering user

facilities (Chen & Wang, 2016; Garoby, 2017). Cold neutrons

have wavelengths similar to X-rays, but whereas X-rays

interact strongly with high-Z atoms, neutrons tend to scatter

off of materials with a high hydrogen content or other light

nuclei. While many imaging and scattering techniques, such as

radiography and computed tomography (CT), are shared

between X-rays and neutrons, the two radiation sources

provide complementary information (Strobl et al., 2009) and

have even recently been combined in a single apparatus

(LaManna et al., 2017; Chiang et al., 2017).

For typical applications, neutron imaging is sensitive to

sample features larger than �20 mm. The spatial resolution of

neutron imaging is limited by the resolution of neutron posi-

tion-sensitive detectors (PSDs), though a range of techniques

can push neutron-imaging resolution down to a few micro-

metres (Hussey et al., 2017; Harti et al., 2017; Williams et al.,

2012; Strobl et al., 2009), and Fourier-space imaging techni-

ques can alleviate the need for PSDs all together (Pushin et al.,

2006). In particular, neutron CT is a very useful form of
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neutron imaging and has been demonstrated with radio-

graphic, phase-contrast, differential phase-contrast and dark-

field signals (Dubus et al., 2005; Strobl et al., 2004, 2008, 2009).

Conversely, neutron scattering is sensitive to much smaller

sample features but does not traditionally provide an image of

the sample. Because neutron scattering is a far-field

measurement, the role of resolution is reversed when

compared with neutron imaging. Higher-resolution scattering

data provide information about larger-scale features in real

space. We used neutron-scattering data with a phase-retrieval

algorithm to perform neutron CT on a periodic sample. Our

method consists of measuring neutron diffraction as a function

of sample rotation and using a phase-retrieval algorithm to

recover the phase in position space. The recovered phase as a

function of sample rotation is then tomographically recon-

structed, providing a two-dimensional density map of the

sample with a spatial resolution that is �300 nm and inde-

pendent of the pixel size of neutron PSDs.

Neutron diffraction from the samples was measured using a

double-crystal diffractometer, similar to typical ultra small

angle neutron-scattering (USANS) techniques. In this first

demonstration, we imaged silicon phase grat-

ings with periods of 2.4 mm over a beam size of

4.4 mm. The span in momentum space that

was measured resulted in a reconstruction

field of view that is the width of ten to twenty

grating periods. While our technique is

insensitive to a low density of grating defects,

such as vacancies or dislocations, the overall

shape and period of the grating is assumed to

be uniform over the entire beam. If a PSD was

used instead of the proportional counter used

in this experiment, the periodic portions of the

sample would only need to extend to the pixel

size, placing the sub-micrometre imaging of

quasi-periodic samples in reach. In practice,

however, the per pixel count rate in such a

setup would set an effective minimum beam

size.

The phase-retrieval and tomographic

reconstruction techniques demonstrated here

may be useful for a sophisticated USANS

spectrometer, such as those described in the

works of Barker et al. (2005) or Strobl et al.

(2007) for a wide variety of sample types.

Phase retrieval and tomography is also used

for X-ray coherent diffractive imaging

(Shechtman et al., 2015; Rodriguez et al., 2013;

Martin et al., 2012; Burvall et al., 2011; Langer

et al., 2008), and phase retrieval using the

transport of intensity equation method for

intermediate-field applications is used by

phase-contrast neutron imaging (Allman et al.,

2000; Strobl et al., 2009). The techniques

described here are directly applicable to other

far-field scattering measurements, such as

small-angle neutron scattering (SANS), where

the measured diffraction patterns are inherently two dimen-

sional, instead of one dimensional, as is the case for USANS

spectrometers.

2. Experiment

The experiment was performed at the NIOFa beamline at the

National Institute of Standards and Technology (NIST)

Center for Neutron Research (NCNR) in Gaithersburg,

Maryland (Shahi et al., 2016; Pushin et al., 2015). A schematic

of the experiment is shown in Fig. 1(a). A 4.4 Å wavelength

neutron beam is extracted from the neutron guide using a

pyrolytic graphite crystal. The beam passes through a 2 mm

slit before being Bragg diffracted (Laue geometry) by a

perfect-silicon crystal (111) monochromator. A 4.4 mm wide

cadmium block is used to select the forward-diffracted beam

from the monochromator. To measure the outgoing

momentum distribution modified by the phase grating, we

placed a second perfect-silicon crystal (111) analyzer after the

grating, forming a double-crystal diffractometer. The mono-

chromator was rotated relative to the analyzer by a rotation
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Figure 1
(a) The experimental setup. A � = 4.4 Å neutron beam passes through a monochromator
crystal, then through a phase grating whose effect is measured by an analyzer crystal and a
3He proportional counter. (b) From the measured diffraction intensity, the position-space
phase is retrieved, providing the phase sinogram, which is then used to reconstruct the
scattering-length density of the grating.



stage with an embedded angular encoder, allowing arcsecond-

precision motion.

The Bragg-diffracted wavepackets are Lorentzian in shape

in momentum space. Their nominal transverse coherence

length is given by the Pendellösung length �H = 35 mm for the

111 reflection from silicon at � = 4.4 Å. Diffraction peaks with

angular locations of

�n ¼ sin�1 n�

�G

� �
; ð1Þ

where �G is the period of the grating and n is an integer that

represents the diffraction order, are clearly visible [Fig. 1(b)].

The relative amplitudes of the diffraction peaks depend on the

shape and amplitude of the phase profile for a given angle of

sample rotation �.

Three gratings were analyzed in this experiment. The period

of each grating was �G = 2.4 mm. The grating depths were h =

29.0 mm, h = 23.9 mm and h = 15.8 mm, with corresponding

phase amplitudes of 2.6 radians, 2.2 radians and 1.4 radians,

respectively, for � = 4.4 Å neutrons. Scanning electron

microscope (SEM) micrographs of the three gratings are

shown in Fig. 2.

Diffraction spectra as a function of grating rotation � about

the y axis were taken from��2 to 4� in 1� steps for Grating-1,

�6 to 6� in 1� steps for Grating-2 and �6 to 6� in 1.5� steps for

Grating-3. The �3� y-axis rotation diffraction spectrum for

Grating-1 was substituted with the 5� spectrum because the

�3� spectrum was out of the measured range. The grating

rotation was severe enough for there to be no diffraction

peaks expected in the �3� spectrum.

The position-space phase of each measured diffraction

spectrum was computed using a phase-retrieval algorithm. The

retrieved phase as a function of � forms a sinogram that was

then tomographically reconstructed, providing two-dimen-

sional images of the scattering-length density of the gratings

[Fig. 1(b)]. See Section 3 for a detailed description of the

reconstruction algorithm. The reconstructions of the grating

scattering-length density and the SEM micrographs of the

three gratings are shown in Fig. 2. The vertical walls of

Grating-2 and Grating-3 are captured by the reconstructions,

while the slope and curvature of the walls of Grating-1 visible

in the SEM micrograph are well represented in the recon-

struction. The good agreement between the SEM micrographs

and the reconstructions also implies that the grating profile is

uniform over a much larger region than what is visible to the

SEM. A uniform phase profile is critical for neutron moiré

interferometers, the recent demonstrations of which used the

same phase gratings (Pushin et al., 2017; Sarenac et al., 2018).

The spatial resolution of the reconstructions is a fraction of

the 2.4 mm period. We estimate the spatial resolution to be

about one fourth of �G/nmax. The diffraction spectra were

measured over a large-enough range to resolve n = 2 (which

was highly suppressed for these phase gratings), so the ulti-

mate resolution is estimated to be 300 nm.

3. Reconstruction algorithm

The phase profile �(x) of a neutron propagating in the z

direction through a material is given in the Eikonal approx-

imation (�� �G) in the work of Sears (1989),

�ðxÞ ¼ �
1

h-

Z
dt V0 ’ ��

Z
dz bðx; zÞ
� �

; ð2Þ

where � is the neutron wavelength, V0 is the material’s optical

potential, the integral is taken over the neutron’s trajectory,

hb(x, z)i is the spatially dependent bound coherent scattering-

length density and h- is the reduced Planck’s constant. For

example, in a homogeneous material hb(x, z)i = Nbc inside the

material and hb(x, z)i = 0 outside the material, where N is the

atomic number density and bc is the bound coherent scattering

length. The goal of tomography is then to reconstruct hb(x, z)i.

We consider one-dimensional phase profiles, though the
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Figure 2
SEM micrographs of the phase gratings (left column) compared with
their neutron tomographic reconstructions (middle column). Also shown
is an overlay (right column) of the outline of the reconstruction over the
SEM. The good agreement between the SEM micrographs and the
reconstructions indicates that the shape of the gratings is uniform over a
large range. The walls of Grating-2 and Grating-3 are shown to be very
straight, while the sloped walls of Grating-1 appear in both the SEM
micrograph and the reconstruction. Edge highlights are added to the
reconstructions for clarity.



extension to two dimensions is straightforward, in which case

the reconstruction of the scattering-length density is three

dimensional instead of two dimensional.

A sample that imprints a spatially dependent phase �(x)

over the incoming wavefunction �i(x) results in an outgoing

wavefunction of

�fðxÞ ¼ exp ½�i�ðxÞ��iðxÞ: ð3Þ

To analyze sample diffraction we look at the neutron wave-

function in momentum space:

e��fðkxÞ ¼ Ff�fg ¼ Ffexp ½�i�ðxÞ�g � Ff�ig; ð4Þ

where Ff:::g is a Fourier transform, and * is the convolution

operator. In this experiment, we measure the outgoing

neutron-momentum distribution, or diffraction spectrum,

which is calculated as PfðkxÞ ¼ j
e��fðkxÞj

2.

If diffraction spectra are taken as a function of sample

rotation, then the resulting momentum-space wavefunction is

given by

e��fðkxÞ ¼
eSSðkx; �Þ � e��i; ð5Þ

with the function eSSðkx; �Þ defined in terms of the the grating

rotation angle � about the y axis (see Fig. 1) and

eSSðkx; �Þ ¼ F Sðx; �Þ
� �

; ð6Þ

given that

Sðx; �Þ ¼ exp �iR� bh i½ �
� 	

; ð7Þ

where integrating over the neutron’s trajectory through a

sample as a function of sample rotation provides the phase

profile [equation (2)] via a Radon transformation of the

scattering-length density R�½hbðx; zÞi�. For clarity, we now

drop the kx and x arguments ineSSð�Þ and S(�), respectively.

Because the size of the beam is much larger than the grating

period, when Pf(kx) is averaged over translations x0 of the

incoming state, e��iðkxÞ !
e��iðkxÞ expðikxx0Þ, the measured

momentum distribution reduces to

Pfðkx; �Þ ¼ eSSð�Þ


 


2� e��i




 


2: ð8Þ

This reduction can also be viewed as an averaging over the

phase, or physical translation in the x direction, of the periodic

structure contained in �(x). Thus, the result is independent of

the translation of the periodic structure, rendering this tech-

nique insensitive to many types of sample defects.

Before recovering the phase profile �(x), the measured

momentum distribution is deconvolved with je��ij
2, which is

simply the measured diffraction spectrum with no sample

present. For this experiment, discrete deconvolutions are

performed between the measured momentum distributions for

each y-axis rotation and the average of the first and last

momentum distributions (largest grating rotations), where

there were no visible diffraction peaks. Additionally, a two-

dimensional Gaussian filter is applied to the resulting jeSSð�Þj2
with respect to diffraction angle � and grating rotation � for

noise suppression. While this step is sufficient for our

purposes, there are other methods for modifying phase-

recovery algorithms for noisy data (Langer et al., 2008; Martin

et al., 2012; Rodriguez et al., 2013).

After isolating the deconvolved diffraction spectra jeSSð�Þj2,

we compute

F
�1 eSSð�Þ


 


 exp i’ðkx; �Þ

� �n o
¼ exp �iR� bh i½ �

� 	
; ð9Þ

where ’(kx, �) is an unknown function. While the absolute

value ofeSSð�Þ is known from the deconvolution of the incoming

and outgoing momentum distributions, the phase ’(kx, �) has

not been measured. Both the momentum-space phase ’(kx, �)

and the position-space phase �ðx; �Þ ¼ R�½hbðx; zÞi� can be

retrieved with an alternating projections algorithm

(Shechtman et al., 2015), an outline of which is shown in Fig. 3.

Note that other methods of neutron phase recovery have also

been demonstrated (Haan et al., 2007).

3.1. Phase recovery

Phase recovery by alternating projections works by alter-

nating between real-space and Fourier-space magnitude

constraints (Shechtman et al., 2015). In our case, the Fourier-

space magnitude-constraint step is imposed by updatingeSSð�Þ
according to

eSSð�jÞ !
eSS0ð�jÞ




 


 eSSð�jÞeSSð�jÞ




 


 ð10Þ

in Fig. 3, where j indexes the grating rotation angle and |S0(�j)|

is the deconvolved measured diffraction spectrum. The real-

space magnitude constraint comes from assuming that

absorption is negligible, in which case |S(�)|2 = 1. The function

S(�) is updated with each iteration of the algorithm by taking

Sð�jÞ !
Sð�jÞ

Sð�jÞ


 

 ; ð11Þ

as shown in Fig. 3. Note that there are methods for extending

the real-space constraint or phase recovery in general to

samples with non-negligible absorption (Shechtman et al.,

2015; Burvall et al., 2011).

It is well known that alternating projection algorithms can

be sensitive to the initial phase guess ’(kx, �) as many global

minima are possible (Shechtman et al., 2015). Some of these

minima may be physical, while others are not. In general,

solutions are impervious to complex conjugations, phase

offsets and real-space translations of S(�) (Guizar-Sicairos &

Fienup, 2012). This complicates phase retrieval for the

purposes of tomography because the solution space needs to

be continuous between rotation steps, �j! �j	1. A number of

phase-retrieval algorithms for tomography exist (Burvall et al.,

2011; Langer et al., 2008), but we find that a suitable way to

ensure a continuous solution space as a function of grating

rotation is to initiate the next iteration of �j	1 with the

previous solution of ’(kx, �j) by taking

’ðkx; �j	1Þ ! ’ðkx; �jÞ ð12Þ

for an initial guess at each step in �. In our algorithm, we do

this from the middle out, choosing the initial value of � to
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correspond to the grating approximately perpendicular to the

beam, then seeding subsequent ’(kx, �) with that of the

previous � in both the positive and negative sample-rotation

directions.

The initialeSSð�Þ is found by passing a random phase ’(kx, �)

into the alternating projections algorithm. This is repeated 200

times and the resulting solution with a minimum error ineSSð�Þ
and S(�) is selected. The error is defined as

�ð�Þ ¼
X

kx

eSSð�Þ


 


� eSS0ð�Þ



 


 �2

þ
1

N

X
x


Sð�Þ


 

� 1

�2

; ð13Þ

where N is the number of points in the x dimension of the

array representing |S(�)|. This term gives equal weighting to

the error in momentum space and position space because the

discrete deconvolution process normalizes eSS0, such thatP
kx
jeSS0ð�Þj

2
¼ 1. Finally, the retrieved phase of S(�) is iden-

tified as the sinogram of the sample’s scattering-length density

argfSð�Þg ¼ R�½hbi�.

3.2. Tomographic reconstruction

The tomographic reconstructions of the recovered position-

space phase are completed with a filtered back projection

(Strobl et al., 2009). In our case, we use a Hann filter, though

other filtering functions may be selected. The aspect ratio of

the reconstructed image is found by performing the filtered

back projection, forming a binary image, then Radon trans-

forming the resulting image and computing the error when

compared with the original recovered phase sinogram. The

error is minimized with respect to the aspect ratio of the

reconstruction. The binarization of the reconstruction is

completed by setting all the reconstruction values below the

average to zero and all the values above the average to one.

The minimization is a local minimum in the neighborhood of

the aspect ratio as predicted by the known scattering-length

density of silicon, the grating period measured using the

diffraction-peak positions and equation (1), and the amplitude

of the recovered phase sinusoid when the grating is approxi-

mately aligned with the beam. A comparison of the recon-

structions and the SEM micrographs are shown in Fig. 2. The

grating color was set to gray with the white outline added to

make the images easier to compare. Note that other methods

for discrete tomography (Krimmel et al., 2005) may also be

useful for samples made of a single material and cut to a

certain shape.

3.3. Diffraction-spectrum truncation

High-order diffraction peaks are difficult to measure, both

because their amplitudes tend to die off with increasing n and

because spanning large momentum transfer requires longer

measurement times. However, the resolution of the recon-

struction will follow 2�/Qtot, where Qtot is the total range in

wavenumber transfer probed. Thus, there is a cost benefit to

measuring higher diffraction orders versus taking more

sample-rotation steps. However, tomographic reconstructions

of the retrieved phase may also improve the spatial resolution

of the reconstruction. This is because lower diffraction orders

in the measured diffraction spectra eSSð�Þ are a mixture of

higher-order components of the Fourier decomposition of the

underlying phase profile. For example, the n = 1 diffraction

peak ineSSð�Þ is a mixture of the n = 1 and the product of the n =
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Figure 3
The outline of the entire reconstruction process. The raw data are filtered
and deconvolved from the average diffraction spectrum of the maximum
and minimum measured sample-rotation angles. The output is passed into
an alternating projections algorithm for each sample rotation angle �,
with the previous solution seeding the next step in �. A filtered back
projection of the sinogram creates the reconstructed scattering-length
density. The high-fidelity portion of the reconstruction is made into a
binary image, Radon transformed back into a sinogram and compared
with the original sinogram over the relevant range. The sinogram error is
minimized with respect to the aspect ratio of the reconstruction. See text
for details.



2 and n = �1 phase-profile Fourier coefficients, corresponding

to the first-order and second-order term in the Born series for

exp[�i�(x)], respectively. In the limit of a single sample-

rotation angle, CT is ill posed; however, one can still estimate a

grating shape using a single recovered phase profile, as has

been demonstrated with neutron diffraction at up to seventh

order (Haan et al., 2007). However, this method breaks down

if the grating outline cannot be expressed as a single-valued

function of the transverse coordinate. For example, the over-

hangs of the stars’ points in Fig. 4 can only be reproduced by

measuring diffraction for multiple sample-rotation angles.

Additionally, taking more projections at lower diffraction

orders has a much lower requisite signal-to-noise ratio,

whereas Haan et al. (2007) needed to resolve diffraction peaks

that were four orders of magnitude less intense than the first-

order peaks. The optimal choice in whether larger diffraction

orders or a higher density of sample rotations should be

pursued will probably depend on the overall phase shift of the

sample. If samples with large phase shifts are measured, more

information is contained in the amplitudes of the low

diffraction orders as a function of sample rotation, as more

terms in the Born series are relevant. However, the samples

considered here, both virtual and experimental, have overall

amplitudes of less than 2�.

To study the performance of the tomographic phase-

retrieval algorithm as well as how truncatingeSSð�Þ affects the

reconstructions, we simulated diffraction spectra from the

image shown in Fig. 4. Diffraction spectra were obtained from

phase profiles of the Radon-transformed image from �19 to

19� in 2� steps. The diffraction spectra were then set to zero

after the first-, second- or third-order diffraction peaks. The

real-space phase was then reconstructed with (1) the phase of

the truncated eSSð�Þ left intact and (2) after passing jeSSð�Þj
through the described phase-retrieval algorithm.

The reconstructions of the original image are shown in

Fig. 4. The spatial resolution of the reconstructed images

increases with increasing |n|max. The reconstructions where the

phase was retrieved provide good estimations of the recon-

structions using the known phase. However, some artefacts are

evident for the phase-retrieved case. There tends to be a

region of high fidelity, with distortions worsening further away

horizontally. The region that best estimates the original image

is not necessarily centered nor at the edge of the reconstruc-

tion because, as previously discussed in Section 3.1, phase-

retrieval algorithms produce translationally invariant solu-

tions. The distortions are of similar character for each level of

diffraction-order truncation. Similar effects were seen in the

reconstructions of the neutron phase gratings. The best region

of the reconstruction was selected visually, as shown with the

dashed line in Fig. 3.

4. Conclusions

We find that the neutron diffraction from silicon phase grat-

ings as a function of grating rotation can be used to tomo-

graphically reconstruct the shape of the gratings. These

reconstructions rely on the periodic structure of the gratings

but nonetheless have a spatial resolution of �300 nm, which is

more than an order of magnitude smaller than other forms of

neutron tomography. In principle, even smaller structures may

be probed, in which case the spatial resolution of the recon-

struction is nominally �2�/Qtot, with Qtot ¼ ð2�=�Þ
ð�max � �minÞ, given by the rotational range of the double-

crystal diffractometer. However, neutron-scattering-length

densities for most materials are such that tens

of micrometres of material are ordinarily

required for a 2� phase amplitude given

typical neutron wavelengths. Thus, it may be

difficult to measure structures with ampli-

tudes less than 100 nanometres.

An upper limit on the length scale to which

this type of tomography is sensitive is set by

the neutron coherence length of �35 mm.

However, the addition of a PSD and possible

combination of phase recovery with the

USANS refractive signal (Treimer et al., 2003)

would allow for much larger reconstructions.

Combining phase recovery with other tomo-

graphy signals is intended for future work.

Further optimization of the phase-retrieval

and reconstruction algorithms is probably

possible. For example, selection of the width

of the Gaussian filter employed in the

deconvolution step is related to the noise

present in the measurement of the diffraction

spectra. Analysis of both real and simulated

noisy data sets may elucidate how to best set

this parameter. Optimization of the cost

benefit between measuring larger diffraction
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Figure 4
Results of the phase-retrieval algorithm and tomographic reconstruction with the FFT of a
Radon-transformed image as inputs. A comparison of reconstructions after truncatingeSSð�Þ
past nth order (rows) with the phase of eSSð�Þ left intact (left column) and with the phase
retrieved (right column).



angles versus taking a higher density of scans through � space

is also of interest. This problem is probably dependent on the

overall phase amplitude of the sample. One may study how

these and other changes to the algorithm impact the recon-

struction of digital phantoms when the fast Fourier transform

(FFT) power spectra of the Radon-transformed image are

used as inputs for the reconstruction, similar to Fig. 4. Finally,

if the grating depth exceeds hlim = �G/�div ’ 70 mm, where �div

’ 0.5� is the beam divergence, the conical shape of the beam

would need to be taken into account. Fortunately, there are

pre-existing tomography algorithms for conical beams which

could be utilized (Feldkamp et al., 1984). However, such

algorithms may lose their effectiveness if the grating depth is a

few times larger than hlim. Despite the need for further

improvements to the tomographic phase-retrieval algorithm,

the results presented here indicate that high-quality tomo-

graphic reconstructions with sub-micrometre resolution of the

scattering-length density are possible.

In the case of phase gratings, creating SEM micrographs

entails cleaving the gratings, while our technique is both non-

destructive and samples a much larger area of the gratings.

Our method can provide non-destructive process and/or batch

testing for nanofabrication applications. In cases where

transporting nanofabricated samples to a neutron facility may

not be practical or when the sample type does not benefit from

using neutrons, phase-recovered tomography from far-field

diffraction data could probably be extended to low-brilliance

laboratory-scale X-ray sources.

In the same way that neutron CT from other signals can be

used to visualize materials in a way that is complementary to

X-rays (Strobl et al., 2009), phase-retrieved neutron tomo-

graphy can provide unique information about a sample. For

example, a periodic structure buried in a matrix would

produce a signal for neutrons but may appear opaque to other

forms of radiation, which could be especially beneficial for

probing tissue scaffolds such as those described in the work of

Dvir et al. (2011). Lithium ion batteries can be imaged using

neutrons (Siegel et al., 2011), and batteries with electrode

layers that are too thin for traditional neutron imaging, such as

those described in the work of Zhang et al. (2011), could

benefit from this method. Finally, we plan to adapt our algo-

rithm to accommodate samples made of two or more mate-

rials, in which case it could potentially be of use for

holographic studies of colloids, where treating colloid struc-

tures as a perturbation to the scattering signal from a grating

has been shown to be inadequate for neutron studies (Feng

et al., 2018).

Two-dimensional phase retrieval and three-dimensional

tomography could be achieved if data are taken as a function

of more than one sample axis of rotation. For a USANS setup,

this would probably be a combination of y-axis and z-axis

rotation in Fig. 1, since only diffraction along the x axis is

measured. For SANS data, where the diffraction spectra are

inherently two dimensional, only one axis of rotation is

required for three-dimensional tomography. If the algorithm is

adapted to SANS data, in addition to measuring the spacing of

oriented biological membranes (Nagy et al., 2011), the shape of

the membranes could be reconstructed. The technique could

also easily be extended to polarized neutron beams to study

magnetic samples. For example, the depth profile of magnetic

vortices could be probed (Eskildsen et al., 2009; Kawano-

Furukawa et al., 2011; Butch, 2018). Additionally, given the

utility of measuring skyrmion lattices using SANS (Mühlbauer

et al., 2009; Adams et al., 2011), it may be possible to generate

three-dimensional renderings of skyrmions and provide

important insights into their shape (Gilbert, 2018). Finally, any

samples with periodic structures that have a macroscopic

ordering and exhibit diffraction peaks in SANS or USANS

data are candidates for phase-recovered neutron tomography.

For an unpolarized test case, we have successfully analyzed the

shape of neutron phase-grating walls, confirming the tomo-

graphic reconstructions with SEM micrographs.
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