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SPIND (sparse-pattern indexing) is an auto-indexing algorithm for sparse

snapshot diffraction patterns (‘stills’) that requires the positions of only five

Bragg peaks in a single pattern, when provided with unit-cell parameters. The

capability of SPIND is demonstrated for the orientation determination of sparse

diffraction patterns using simulated data from microcrystals of a small inorganic

molecule containing three iodines, 5-amino-2,4,6-triiodoisophthalic acid mono-

hydrate (I3C) [Beck & Sheldrick (2008), Acta Cryst. E64, o1286], which is

challenging for commonly used indexing algorithms. SPIND, integrated with

CrystFEL [White et al. (2012), J. Appl. Cryst. 45, 335–341], is then shown to

improve the indexing rate and quality of merged serial femtosecond crystal-

lography data from two membrane proteins, the human �-opioid receptor in

complex with a bi-functional peptide ligand DIPP-NH2 and the NTQ chloride-

pumping rhodopsin (CIR). The study demonstrates the suitability of SPIND for

indexing sparse inorganic crystal data with smaller unit cells, and for improving

the quality of serial femtosecond protein crystallography data, significantly

reducing the amount of sample and beam time required by making better use of

limited data sets. SPIND is written in Python and is publicly available under the

GNU General Public License from https://github.com/LiuLab-CSRC/SPIND.

1. Introduction

The high brightness and femtosecond pulse duration of X-ray

free-electron lasers (XFELs) enabled the serial diffraction-

before-destruction paradigm (Neutze et al., 2000), which

mitigates X-ray radiation damage and allows data to be

collected from weakly scattering targets. In a typical serial

femtosecond crystallography (SFX) experiment, diffraction

patterns are recorded from tens of thousands of microcrystals

delivered sequentially across a pulsed X-ray beam [Chapman

et al. (2011); see Spence (2017) for a review]. These snapshot

diffraction patterns (from individual microcrystals) corre-

spond to reciprocal-space intensity samples that lie on the

surface of the Ewald sphere. Since each crystal is in a random

orientation, crystal orientations must be determined before

intensities can be merged in three-dimensional reciprocal

space. Femtosecond XFEL pulses are too short for substantial

crystal rotation during exposure, so only partial reflection

intensities are recorded in each diffraction pattern, with

partiality determined by various factors such as X-ray band-

width and crystal shape, size, orientation and mosaicity.

SFX data analysis is challenging because of the wide

variation in crystal size and mosaicity, which is confounded by
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jitter in the XFEL pulse energy and spectrum, detector

dynamic range limitations, and the random positions/orienta-

tions of crystals. Monte Carlo integration (Kirian et al., 2010)

is an effective means of producing crystallographic structure

factors by simply averaging over stochastic measurement

variations that are assumed to be completely random.

However, this approach requires a large number of patterns

(on the order of tens of thousands) in order for the average

partial reflection measurements to converge to a reliable set of

integrated Bragg intensities [see Li et al. (2015) for error

metric analysis of the Monte Carlo integration approach]. This

is in contrast to conventional synchrotron crystallography in

which the molecular structure is determined using one or a few

larger crystals, using the oscillation approach where the crys-

tals are rotated through the Bragg condition during the

intensity recording to yield angle-integrated structure factors.

Post-refinement techniques for SFX data have recently been

developed that can greatly reduce the number of required

snapshot patterns to a few thousand, or a few hundred, in

favorable circumstances (White, 2014; Uervirojnangkoorn et

al., 2015; Sauter, 2015; Ginn et al., 2015). This reduces demand

on scarce XFEL beam time and sample volume.

A number of software packages have been developed

specifically for SFX or snapshot diffraction data analysis [see

Liu & Spence (2016) for a review]. An SFX data-analysis

pipeline commonly starts with data-reduction programs such

as Cheetah (Barty et al., 2014), which apply various detector

calibrations, identify diffraction peaks and produce data-

collection statistics. Patterns containing diffraction peaks are

then passed to programs such as CrystFEL (White et al., 2012)

or cctbx.xfel (Hattne et al., 2014) for high-throughput auto-

indexing and intensity merging. CrystFEL’s program

indexamajig calls subroutines wherein partial reflections are

auto-indexed and locally integrated within each two-dimen-

sional pattern. Finally, intensities from partial reflections are

merged by process_hkl (optionally including scaling and post-

refinement using partialator), which results in a set of Bragg

intensities. For each diffraction pattern, indexamajig passes

the peak positions as input arguments to auto-indexers such as

MOSFLM (Powell, 1999), DirAx (Duisenberg, 1992), or XDS

(Kabsch, 1988, 1993), or algorithms implemented directly in

indexamajig, such as asdf, felix (Beyerlein et al., 2017) and

taketwo (Ginn et al., 2016). Auto-indexing modules return a set

of lattice vectors oriented in the laboratory frame and work by

first converting Bragg reflections to three-dimensional reci-

procal-space vectors. MOSFLM or LABELIT, for example,

then projects these vectors onto a set of discrete directions

distributed about a hemisphere (Campbell, 1998; Leslie, 2006;

Powell, 1999; Steller et al., 1997; Sauter et al., 2004). If a

sufficient number of diffraction peaks from a single crystal

lattice contribute to the one-dimensional projected histogram,

its Fourier transform consists of sharp spikes if the projection

direction coincides with one of the principal axes of the

crystal. The frequency of these spikes provides lattice para-

meter information. Once principal axis candidates are iden-

tified, indexamajig predicts the possible Bragg peak positions

in the original pattern, tests for reasonable agreement with the

observed peak positions, and if the agreement is satisfactory,

the peak intensities are integrated. The result of this proce-

dure is a set of partially integrated reflection intensities and

associated Miller indices.

This data-analysis pipeline has been used for high-

resolution structure determination in both SFX and synchro-

tron serial crystallography (Nogly et al., 2016; Standfuss &

Spence, 2017). However, a significant portion of SFX

diffraction patterns, especially those from difficult-to-crystal-

lize macromolecules such as membrane proteins, only have a

small number of identifiable Bragg peaks because of small

crystal size, crystal disorder, scattering from air and sample-

delivery medium, and detector noise, which decrease the

signal-to-noise ratio (SNR). Time-resolved SFX requires small

crystals because the extinction length of the optical-pump

laser is typically on the order of 10 mm, while the temporal

resolution of mix-and-inject SFX (to study ligand binding, for

example) is limited by mixing and diffusion rates, and hence

also benefits from smaller crystal size (Schmidt, 2013). The

narrow (though spiky) bandwidth of XFELs based on self-

amplified spontaneous emission (SASE) and the stillness of

crystals during the ultrafast exposures in SFX also limits the

number of Bragg spots that intersect the Ewald sphere. In

addition, inorganic crystals typically have very small unit cells

and so give rise to sparse patterns with fewer Bragg peaks in

the same resolution shell than most protein crystals. Existing

auto-indexing algorithms that are based on one-dimensional

Fourier transforms typically require that each pattern consist

of 20 [or even more (Campbell, 1998)] accurately identified

Bragg peaks to yield a reliable crystal orientation. The

development of auto-indexing algorithms for sparse patterns

with fewer peaks would greatly increase SFX data utilization

for such challenging cases with low resolution, and for samples

with very small unit cells. Here we take sparse to mean that

there are few Bragg spots, rather than weak Bragg intensities.

In this paper, we present a new algorithm, SPIND (sparse-

pattern indexing), designed to index patterns with sparse data,

achieve faster and more accurate structure-factor measure-

ments, and reduce measurement time, sample consumption

and cost. The use of angles between scattering vectors, as well

as their lengths, is a strong constraint, as described in Methods.

SPIND has the merit of a low false-positive rate and hence a

high level of effectiveness as well as efficiency, which is

demonstrated on extremely sparse patterns simulated from

inorganic crystals and experimental SFX data from

membrane-protein microcrystals. Two alternative auto-

indexing algorithms for sparse patterns have been developed

recently. Maia et al. (2011) developed a compressive sensing-

based auto-indexing algorithm for sparse diffraction patterns

in serial femtosecond nanocrystallography in which lattice

reconstruction is reformulated as an L1 minimization (basis

pursuit) problem. The algorithm was shown to efficiently

reconstruct a three-dimensional lattice and its orientation

from a simulated noise-free sparse diffraction pattern without

prior knowledge of the unit cell. The use of multiple three-

dimensional fast Fourier transforms renders the algorithm

computationally expensive in its current form, but incorpor-
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ating additional algorithms designed for sparse data should

substantially increase its speed. Additionally, the indexing

ambiguity arising from mirror symmetries of the lattice

remains to be resolved, and the algorithm is yet to be

demonstrated on experimental data or in the presence of

noise. An alternative auto-indexing algorithm for sparse SFX

diffraction patterns from crystals with small unit cells, which

depends on known lattice parameters, was demonstrated by

Brewster et al. (2015) on amyloid peptide nanocrystal data.

The approach consists of three steps: (1) assign each peak all

possible Miller indices corresponding to its resolution, (2)

resolve the ambiguities in Miller-index assignment (e.g. from

lattice symmetry or semi-overlapping powder rings) and (3)

calculate basis vectors and refine crystal orientation, itera-

tively. The Bron–Kerbosch algorithm (Cazals & Karande,

2008) is used to determine the maximum-clique of a graph in

which all found peaks, with each of their candidate Miller

indices, are represented as individual nodes. For each pair of

peaks, the differences between calculated and observed inter-

peak distances in reciprocal space (for each candidate Miller

index) are represented as edges, so Bragg peaks that cannot be

simultaneously accounted for by one orientation matrix are

not connected in the graph. An advantage of the graphic

maximum-clique algorithm is its tolerance to false peaks, but

for very sparse patterns (five Bragg peaks), the determined

unit-cell accuracy is on the order of 10%.

2. Methods

Here we describe the algorithm for indexing patterns

containing very few Bragg peaks, which we refer to as SPIND.

If peaks are sparsely distributed in each pattern, their

periodicity is difficult to identify via Fourier methods. The

proposed algorithm therefore utilizes prior knowledge of unit-

cell parameters. The algorithm works as follows (see Fig. 1 for

a flowchart). For each pattern:

(a) Bragg peaks are identified and their positions, inten-

sities, SNRs, resolution and the camera length are written to a

plain text file.

(b) The two-dimensional peak positions on the detector are

converted to three-dimensional reciprocal vectors that start

from the beam center (treated as a 000 reflection) using the

experimental geometry.

(c) The best five peaks (or more) are chosen from the peak

list according to intensity, SNR or resolution (these can be

chosen by the user). In principle, any number of peak pairs

greater than two can be used to determine the crystal orien-

tations. Indexing reliability increases with the number of pairs

used, as discussed later. However, the computation time scales

roughly as N2 {the number of pairs scales as N!= 2 N � 2ð Þ!½ �

where N is the number of peaks}. We found that five peaks

(ten peak pairs) is a good compromise between indexing yield

and computational time.

(d) For each of the ten pairs, the two vector lengths and

angle between the pair are calculated [see Fig. 2(a)].

(e) For a large set of discretized crystal orientations, a

reference table is created that contains the expected lengths,

ratio of the lengths, and angles between vectors for all possible

pairs (within a certain resolution limit). This reference table is

based on prior knowledge of the unit cell and is calculated

only once in the whole process of indexing.

( f ) The set of observed vector lengths, ratios of lengths (in

case the geometry needs refinement), and angles corre-

sponding to each of the ten pairs of peaks are compared with

the entries in the reference table. Whenever a match is found

between a given observed peak pair and an entry in the

reference table (within a preset mismatch tolerance), the

reference-table entry (i.e. crystal orientation) is considered to

be a solution candidate and added to a solution pool. One

solution pool, with multiple entries, is created for each of the

ten peak pairs.

(g) If all reciprocal vectors correspond to the same crystal

orientation, the true solution for the crystal orientation must

be in the intersection of all ten solution pools (Fig. 2b). This is

a strong constraint that effectively eliminates spurious solu-

tion candidates in one step without implementing other opti-

mization and clustering algorithms such as in the work by

Brewster et al. (2015). However, this constraint is sensitive to

peaks not belonging to a single lattice, which will require

development of approaches for eliminating false peaks used

for indexing. The indexing ambiguity that occurs in cases

where the symmetry of Bravais lattice is higher than the space-

group symmetry is not resolved here. Several algorithms have

been designed and tested to resolve this type of indexing-

ambiguity problem, in particular for serial crystallography

data (Brehm & Diederichs, 2014; Liu & Spence, 2014).

(h) For very sparse patterns, if a single orientation is found

in the intersection, it is used to predict peak locations. If the

distance between predicted and found peaks of the same

Miller index (in three-dimensional reciprocal space) is within

the tolerance threshold, the peaks are tagged as matched. By

default, this threshold is half of the distance to the nearest

Bragg peak. If the predicted peaks match all found peaks in

the experimental pattern, the solution is accepted; otherwise,

the pattern is considered un-indexable and rejected.

(i) For diffraction patterns containing more spots: all

candidate orientations (from all solution pools) are used to

predict peak locations. The quality of the orientation candi-

date solution is scored by the number of predicted peaks

matching observed peaks (for all peaks, not just those used for

indexing), the percentage of peaks matched (a higher

percentage of matched peaks is required if the total number of

peaks is low) and the determined lattice centering.

3. Results and discussions

3.1. Simulating and indexing sparse patterns from inorganic
microcrystals

In order to test the ability of SPIND to index sparse

diffraction patterns, we simulated 400 diffraction patterns

from 5-amino-2,4,6-triiodoisophthalic acid monohydrate (I3C)

crystals (Beck & Sheldrick, 2008) at random orientations. A
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unit cell with a = 9.02, b = 15.73, c = 18.82 Å, � = � = � = 90�, a

photon energy of 9.61 keV, 0.5 mm beam radius, 110 �

110 mm2 detector pixel size, and 53.2� maximum scattering

angle at a working distance of 0.07 m were used for diffrac-

tion-pattern simulations. The three-dimensional profile of the

reciprocal lattice points was modeled as Gaussians taking into

account 1 mm crystal size and structure factors. The intensities

were calculated from the three-dimensional Gaussian profile

and the excitation error, defined as the distance between the

Ewald sphere (corresponding to monochromatic X-ray beam

of 9.61 keV photon energy) and the center of the reciprocal

lattice point projected in the beam direction. Poisson noise

and background scattering were included such that only three

to five Bragg peaks were identifiable in each pattern [see

Figs. 3(a) and 3(b) for a representative pattern before and

after adding noise terms]. The SPIND

algorithm obtained correct crystal

orientations and Miller indices for all

400 patterns. This implementation of

SPIND (written in MATLAB R2014b;

The MathWorks Inc., Natick, MA,

USA) required millisecond computa-

tional time on a Mac 2.7 GHz Intel

Core i7. In addition to the fast

computation time, the orientation was

determined with high accuracy. A

typical example from the 400 patterns

that were indexed successfully is

shown in Fig. 3(c), where the orienta-

tion was determined with an accuracy

of around 0.1�.

To investigate the robustness of the

indexing algorithm in the presence of

lattice inhomogeneity or inaccurate

guiding-cell constants, an additional

set of 400 I3C diffraction patterns was

simulated with random Gaussian fluc-

tuations in lattice constants about the

mean values with 0.5% standard

deviation. SPIND indexing was

carried out using 11 different guiding

unit cells with varying � angle values

and lengths of b and c basis vectors.

The � angle of the guiding cell was

varied from 80 to 110� symmetrically

around the nominal value of 90�, with

the length of the b and c basis vectors

adapted such that the volume of the

cell is invariant (same as the nominal

cell used to simulate the diffraction

patterns) to maintain a consistent

average density of the Bragg orders as

a control factor. The number of

indexed patterns decreased as the

guiding cell deviated incrementally

from the nominal cell (Fig. 4a). In this

test, the peak indexing rate appears at

the � angle values of 89 and 91�, which is most likely attri-

butable to the random fluctuations in lattice constants

combined with the limited size of the diffraction data set. To

validate this argument, the distribution of the three-dimen-

sional reciprocal-space distances between the predicted and

the found positions for the paired peaks from all indexed

patterns were obtained for the � angle values of 90, 91, 92 and

93� (Fig. 4b). The most probable value of the distance between

the predicted and the observed peak positions is minimized

when � = 90� and increases consistently as the � value incre-

mentally deviates from 90�. In addition, the total number of

paired peaks also drops as the guiding cell deviates from the

nominal. In accordance with the symmetry of the orthor-

hombic I3C lattice, the indexing rate and distance discrepancy

for paired peaks are also essentially symmetric about � = 90�.
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Figure 2
Illustration for SPIND auto-indexing algorithm. (a) A diffraction pattern recorded by Cornell-SLAC
hybrid Pixel Array Detector (CSPAD) (Herrmann et al., 2013; Hart et al., 2012), with a few
exaggerated peaks for illustrative purposes. Five peaks are selected to form ten vector pairs. The
vector lengths, ratio of lengths and angles between the vectors are then calculated for the ten pairs for
matching with a reference based on a priori knowledge of the unit cell (within some mismatch
tolerance). (b) Rejection module for eliminating spurious solution candidates, based on the constraint
that all peak pairs share the same crystal orientation. The solution must lie in the intersection of the
solution pools, provided that the peaks are from a single crystal.

Figure 1
Flowchart of the SPIND indexing algorithm. The five best peaks in each pattern selected based on
user-chosen criteria, such as SNR, are used for indexing. The blue boxes refer to prior knowledge and
the table is calculated once. The green boxes are steps carried out for each pattern. The (red)
rejection module refers to steps (g) to (i).



For this reason, only half of the distribution statistics, corre-

sponding to � > 90�, are shown in Fig. 4(b) for visual clarity.

The abrupt drops of the paired-peak population at 0.01 Å�1 in

Fig. 4(b) arise from this same cut-off value set for the peak-

match judgment [step (h) in the Methods section]. The

indexing rate drops to approximately 25% at � = 87, 93� which

shows a �3� tolerance range for the uncertainty or inaccuracy

in the guiding-cell constants. The indexing rate drops rapidly

further to 0.5% at � = 85, 95� and goes to 0 beyond 10� of

deviation. This low false-positive indexing rate verifies the

reliability of the SPIND rejection module. These indexing

statistics using guiding cells that deviate incrementally from

the nominal have demonstrated the robustness of the SPIND

indexing algorithm to the lattice inhomogeneity, a wide

tolerance range for the guiding-cell constants and low false-

positive indexing rate when the target lattice cell is clearly

distinguishable from the guiding cell. Furthermore, it is

worthwhile to point out that the guiding cell, as well as other

indexing parameters such as error tolerance and threshold

values (see the Methods section), can be updated iteratively by

using indexing statistics (see Fig. 4 as an example) as feedback.

Individual pattern-based lattice refinement, together with this

iterative updating of the guiding cell and indexing parameters

are part of ongoing development.

3.2. Indexing SFX data from a G-protein-coupled receptor
complex

To demonstrate the algorithm on protein serial crystal-

lography data, SPIND was used to index serial X-ray

diffraction data from microcrystals of a G-protein-coupled
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Figure 4
The effect of inaccurate guiding unit cells on SPIND indexing rates and peak-prediction accuracy demonstrated on simulated I3C snapshot diffraction
patterns. (a) Number of indexed patterns as a function of the � angle of the guiding cell (� = 90� is nominal). (b) Distribution of distance discrepancy in
three-dimensional reciprocal space between found and predicted peaks for matched peak pairs using guiding cells with different � angle values. The
legend shows the � angle of the guiding cell. The center of the distribution shifts to larger values as � deviates further from the nominal value of 90�. The
same trend was observed for values of � < 90� (omitted for clarity). The results demonstrate the robustness of the algorithm to the lattice inhomogeneity,
a wide tolerance range for the guiding-cell constants and low false-positive indexing rate when the target lattice cell is clearly distinguishable from the
guiding cell. The indexing rate can be used as an indicator for the accuracy of the reference unit cell.

Figure 3
Simulated I3C patterns indexed by SPIND. (a) Simulated sparse
diffraction pattern from an I3C crystal in the orientation specified by
Euler angles �10.4676, 46.9022, 139.1443. (b) Poisson noise and random
background noise added to (a), so only three Bragg peaks were
identifiable (circled). (c) The indexing result by SPIND using only the
three peaks in (b). The determined crystal orientation is at Euler angles
of �10.5713, 46.8855, 139.2000. The peaks were predicted from the
determined orientation and Miller indices were given for Bragg peaks.



receptor (GPCR) complex, the human �-opioid receptor in

complex with a bi-functional peptide ligand DIPP-NH2

(referred to as DOR henceforth) collected at the Coherent

X-ray Imaging (CXI) endstation of the Linac Coherent Light

Source (LCLS) (Fenalti et al., 2015; Liang et al., 2015).

We used the diffraction patterns from the data set ID 40 in

the Coherent X-ray Imaging Data Bank [CXIDB, Maia

(2012)]. For CXIDB 40, the LCLS raw data, containing over

1 967 530 detector frames, were reduced using Cheetah for hit

finding, leaving 125 458 diffraction patterns from DOR

microcrystals. Indexing and intensity integration were

performed with CrystFEL 0.6.2 (White, Barty et al., 2016),

based on the same indexamajig and partialator parameters as

used for the original processing

(Fenalti et al., 2015). The indexing

was attempted by MOSFLM 7.2.0

(using prior unit-cell parameters and

lattice type information), followed by

DirAx, and finally MOSFLM without

any prior information. For a fair

comparison of the indexing rate and

accuracy of SPIND on SFX data, the

DOR data were reprocessed using

one indexing method at a time rather

than combinations thereof [the latter

was the approach in the work by

Fenalti et al. (2015) and (White, Barty

et al., 2016). The auto-indexing

methods that are compared in this

work are SPIND, DirAx, and

MOSFLM (with and without lattice

type and unit-cell input). Also, the

refinement option was toggled on

and off in indexamajig to investigate

the effect of the pattern filtering after

SPIND auto-indexing on the quality

of merged data.

The data processing was

performed using the scripts deposited

in CXIDB ID 40 with minimal

necessary changes to keep the consistency for comparison

between different indexing methods. A slightly larger unit cell

than the published one was found to give more symmetric

unit-cell distributions (see Fig. S1 in the Supporting infor-

mation) and higher indexing rates, so the updated unit cell was

used for all DOR indexing tests, with a = 160.10, b = 91.64, c =

99.05 Å, � = 92.22�. The other parameters used for data

processing in this work are summarized in Tables 1 and 2. In

general, the number of indexed patterns using SPIND algo-

rithm increases with the resolution limit that the reference

table is generated to [step (e) in the Methods]. However,

increasing the resolution limit of the reference table also

results in longer computing time and higher demands on

memory. Therefore, an optimal resolution limit of 8 Å was

chosen after several trials to balance between the indexing

rate and the computation time. Similarly, the tolerance

threshold for reciprocal-vector search [step ( f )] was set to be

3� 107 m�1 and 3� based on the performance of several trials.

To evaluate the performance of SPIND alongside other

indexing methods, the merged data quality metrics – SNR,

multiplicity, and two metrics of data precision: CC* (Karplus

& Diederichs, 2012) and Rsplit (White, Kirian et al., 2012) – are

summarized in Table 3 and plotted in Fig. 5. Compared with

MOSFLM or DirAx individually, SPIND yielded the highest

indexing rate (53.5%) with the orientation refinement option

on in indexamajig (see Table 3), and 94.4% without the

refinement. The refinement module in indexamajig of

CrystFEL acts as a filter for the indexed patterns (White,

Mariani et al., 2016) by conserving only the patterns where the

predicted peaks match the observed peaks sufficiently well
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Table 1
Parameters for hit finding of DOR data set using Cheetah (Fenalti et al., 2015).

No. of
frames
collected

Minimum no.
of peaks
per frame

No. of
pixels
per peak

Peak
intensity
threshold
(ADU)

SNR
threshold

Peak
search
region

Peak
finder
algorithm

No. of
hits found
(hit rate %)

1967539 15 2 – 40 40 4 70–700 pixels
from center

8 125458 (5.9)

Table 2
Parameters for auto-indexing of DOR SFX data using indexamajig, calling DirAx, MOSFLM and
SPIND as subroutines.

Indexer
Reference
cell

indexamajig
orientation
refinement

Unit-cell tolerance
(vector-search
tolerance
in SPIND)

Radii of
peak integration
and background
rings (pixels)

No. of
indexed patterns
(indexing rate %)

DirAx Yes Yes 5%, 1.5� 3, 4, 5 65015 (51.8)
MOSFLM Yes Yes 5%, 1.5� 3, 4, 5 57687 (45.9)
MOSFLM No Yes 5%, 1.5� 3, 4, 5 57413 (45.7)
SPIND Yes Yes 5%, 1.5�

(3 � 107 m�1,
3�, reference
resolution > 8 Å)

3, 4, 5 67204 (53.5)

SPIND Yes No 5%, 1.5�

(3 � 107 m�1,
3�, reference
resolution > 8 Å)

3, 4, 5 118514 (94.4)

Table 3
Merging statistics from DOR SFX data using partialator.

The values in the parentheses are for the highest-resolution shell (2.8–2.7 Å)

Indexing
method

No. of
patterns
used

No. of
crystals
merged

Resolution
range (Å)

Rsplit

(%) CC* SNR

DirAx
-refine

65015 64918 34.3–2.7 11.9 0.9982
(0.7069)

6.3

MOSFLM
-refine

57687 57597 34.3–2.7 12.6 0.9979
(0.6803)

6.1

MOSFLM
-nolatt
-refine

57413 57309 34.3–2.7 12.1 0.9980
(0.6704)

6.2

SPIND
-refine

67204 67067 34.3–2.7 11.7 0.9981
(0.6992)

6.5

SPIND
-norefine

118514 116198 34.3–2.7 14.7 0.9973
(0.5978)

5.8



while discarding the others, resulting in a reduced indexing

rate. The multiplicity from DirAx-refine is slightly higher than

that from SPIND-refine, while the overall SNR is lower

(Fig. 5). SPIND-refine has the highest overall figures-of-merit

– SNR, Rsplit, and CC* (Karplus & Diederichs, 2012) – in all

resolution shells. These self-consistency figures-of-merit along

with the Wilson plots (Fig. 6) for the merged data sets from

different indexing methods verify the general reliability of the

SPIND indexing algorithm and its applicability to serial

protein crystallography data processing. (Otherwise, the

figures-of-merit would become worse as patterns that are

incorrectly indexed are merged towards the structure-factor

list.) The B factors [calculated by TRUNCATE in CCP4

(French & Wilson, 1978)] were between 48 Å2 (MOSFLM-

nolatt-refine) and 60 Å2 (SPIND-norefine). Moreover, the

additional patterns indexed using SPIND and the improved

figures-of-merit indicate the potential capability of mining

more data for structure determination, and hence improving

the data efficiency, by including this new algorithm in the serial

crystallography data analysis routine.

By enabling indexing of patterns with much fewer peaks,

SPIND-norefine yields much higher multiplicity [see

Fig. S2(b) in the Supporting information], at the cost of other

figures-of-merit (Fig. 5). The Bragg reflection profile radius

(for each crystal) calculated by indexamajig is a measure of the

excitation errors of matched peaks and thus serves as a

measure of the accuracy of the determined orientation. The

modal value of the reflection profile radii when using SPIND-

norefine is the same as for the other indexing methods

(Fig. 5d), indicating SPIND orientation determination is
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Figure 5
Figures-of-merit as a function of resolution for DOR SFX data. (a) SNR, (b) CC*, (c) Rsplit and (d) Bragg reflection profile radii determined by
indexamajig. See Fig. S2(a) for full range of reflection profile radii and Fig. S2(b) for reflection multiplicity in merged data sets in the Supporting
information. The keywords ‘refine’ and ‘norefine’ represent the on and off status of the lattice-refinement option in indexamajig in the indexing process.
‘nolatt’ represents that the reference cell and lattice type were not used as input for indexing (but were used as constraints for the indexing solution).



sufficiently accurate for these patterns without the refinement

module in indexamajig. However, 10% of the patterns had an

insufficient number of matched peaks as determined by

indexamajig, and the reflection profile radius was not updated

from the default value of 0.02 � 109 m�1 [see Fig. S2(a) in the

Supporting information]. Removal of these patterns improved

the SNR (and the CC*, marginally) in lower-resolution bins.

The majority of DOR patterns were of lower resolution (see

Fig. S3 in the Supporting information), and SPIND-norefine

was able to index a larger portion of these [see Fig. S3( f ) in

the Supporting information], with high accuracy indicated by

the small reflection profile radii [see Fig. S4(b) in the

Supporting information]. It is possible the lower overall

quality of the merged SPIND-norefine data set is caused by

the inclusion of potentially anisomorphous crystals (from the

lower-resolution crystal batch), or lack of orientation and unit-

cell refinement.

3.3. Indexing SFX data from chloride ion-pumping rhodopsin
microcrystals

Serial crystallographic data were collected from chloride-

pumping rhodopsin (ClR) microcrystals at CXI, LCLS. Over

1 200 000 raw frames were collected in about 3 h. Cheetah

identified 105 050 patterns as crystal hits with at least ten

peaks per pattern with SNR > 8. After several rounds of

geometry and lattice-cell refinement, 3414 patterns were

indexed using CrystFEL, giving an indexing rate of approxi-

mately 3%, with a monoclinic unit cell where a = 103.45, b =

50.28, c = 69.38 Å, and � = 109.7�. Merging these 3414 indexed

patterns led to a structure solution (based on molecular

replacement) but with low figures-of-merit. This was attrib-

uted to the small number of indexed diffraction patterns

(especially for a membrane protein) and poor diffraction

quality in the higher-resolution range (the average multiplicity

drops below 15 for resolution greater than 6 Å).

To understand what caused the 3% low indexing rate,

statistics including peak intensity and number of peaks per

pattern were obtained for all the crystal hits. A strong corre-

lation between the number of peaks per pattern and the

indexing rate was found as shown in Fig. 7(a). For patterns

that consist of more than 100 peaks, the indexing rate is above

�30% (CrystFEL 0.6.2), while it drops significantly for the

patterns with fewer peaks. Furthermore, as shown by the

distribution of number of peaks per pattern (Fig. 7a), a large

portion of the patterns that are identified as crystal hits consist

of only ten to 30 peaks. This ineffectiveness and low efficiency

in auto-indexing the patterns with a small number of peaks led

to the low indexing rate of 3%. To improve the indexing rate

for patterns that consist of few peaks, the SPIND algorithm

was applied to this data set. The indexing rates from all

indexing methods are summarized and compared in Fig. 7(b).

The SPIND algorithm increased the indexing rate slightly, to

4% if using the refinement feature in indexamajig (labeled

SPIND-refine in the figures), and to 54% without the refine-

ment feature. MOSFLM indexed 3.1% of the patterns using

refinement and 3.5% without the refinement step. SPIND

orientation solutions were chosen based on scoring the

candidate orientations as described in the Methods [step (i)].

Lattice and orientation refinement in indexamajig requires

that more than nine peaks match the predicted peak positions

well, from the lowest resolution, with a smooth gradient in

excitation error for later refinement. Patterns are regarded as

unindexed if this criterion is not met. This contributes to the

abrupt reduction in indexing rate when the refinement is

included in the analysis of the data set since it consists of a

significant portion of patterns with few peaks. Fig. 8(a) shows a

representative diffraction pattern that is successfully indexed

by both MOSFLM and SPIND. Almost all patterns indexed

by MOSFLM were also indexed by SPIND (with consistent

crystal orientations). Patterns that MOSFLM could index but

SPIND failed to index were found to be multi-crystal patterns.

SPIND indexed more patterns that were not indexed using

MOSFLM, and an example is shown in Fig. 8(b). It should be

noted that the pattern in Fig. 8(b) has fewer peaks than that in

Fig. 8(a). This observation is consistent with the correlation

between indexing rate and number of peaks per pattern

identified in Fig. 7(a), and validates the capability and effec-

tiveness of the SPIND algorithm in indexing patterns with

fewer peaks in this data set.

The ClR data sets were merged with partialator (version

0.6.3), excluding reflections with pixel values > 13 200 ADU,

push-res = 1.0, with three iterations of scaling and no partiality

refinement, resulting in high SNR and CC*, but limited

completeness at high resolution (making the CC* and SNR

misleading in those resolution bins), as shown in Figs. 9 and S5

in the Supporting information.

The Wilson plots are linear to �2 Å for all indexing

methods (Fig. 9d). SPIND-refine performed the best overall,

with a higher indexing rate, slightly higher SNR, CC* and

smaller modal reflection profile radius (Fig. 9). The inclusion
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Figure 6
Wilson plots for the merged DOR data sets from different indexing
methods. The linearity in the 0.06 to �0.13 Å�2 region and the
consistency between all indexing methods confirm the quality of the
merged data sets.



of a large number of low-resolution patterns by SPIND-

norefine yielded a higher SNR and CC* in the lowest resolu-

tion shell, but performed worse at medium and high resolu-

tion. To understand the contrasted behavior between low- and

high-resolution ranges, the histograms of the apparent

diffraction resolution that is estimated by CrystFEL per

pattern for different indexing methods are compared with the

resolution histogram of the found peaks (Fig. 10). The reso-

lution distributions of the patterns indexed by SPIND are

consistent with that of all found peaks, showing clustering in

both low- and high-resolution ranges, while other indexing

methods favor more high-resolution patterns. The peak in the

low resolution range tails at about 1.2 nm�1 in Figs. 10(d) and

10(e) explains the significant increase in SNR in the lowest

resolution bin (Fig. 9b). The kink in the SPIND-norefine

Wilson plot (Fig. 9d, yellow line) around 0.15 Å�2 is probably

caused by the imperfect scaling of intensities from two distinct

crystal batches, judging by their diffraction resolution (see

resolution histograms in Fig. 10e), which is likely to be indi-

cative of anisomorphism between the two crystallization

batches. The accuracy or orientations determined by SPIND-

norefine can be inferred by the small reflection profile radii,

showing again that SPIND, even without orientation refine-

ment, did determine accurate orientations for the majority of

the patterns.

The refinement module in indexamajig optimizes and

refines the lattice constants and crystal orientation for each

indexed pattern by minimizing the residuals between the

experimental peak positions and the peak positions that are

predicted from the orientation matrix given by the auto-

indexer. Therefore, for SPIND-norefine and the 3-ring

integration method (White et al., 2012) that is usually adopted

for intensity integration using indexamajig, the background,

signal and noise are incorrectly estimated since the predicted

peak positions may not match the observed peak positions in

the higher-resolution range without lattice refinement. The

addition of an orientation refinement module requiring fewer

peaks will improve merging statistics from SPIND at higher

resolution than demonstrated here, if not limited by crystal

quality.
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Figure 7
Statistics of ClR data set. (a) Distribution of number of peaks per pattern. Most patterns contained ten to 30 peaks, and were not indexed using
MOSFLM (gray bars, �100 000 patterns). Histograms from SPIND-refine and MOSFLM-refine fit within the yellow distribution and are omitted for
clarity. (b) Comparison of indexing rates using MOSFLM and SPIND with the lattice-refinement option in indexamajig enabled and disabled. The
lattice-refinement feature requires that more than ten found peaks match their predicted peak positions with a small excitation error (that increases
smoothly with resolution) (White, Barty et al., 2016). Patterns are discarded (not indexed) if this criterion is not met. This contributes to the abrupt cut in
indexing rate from using SPIND-norefine to SPIND-refine since this data set consists of a significant portion of patterns with few peaks (fewer than five).

Figure 8
Representative indexed diffraction patterns from the ClR data set,
recorded on the CSPAD. (a) indexable by both MOSFLM and SPIND,
(b) indexable only by SPIND. Identified peaks are marked by red crosses,
and peak positions predicted from the orientation matrix given by
MOSFLM and SPIND are marked with cyan and green circles,
respectively. The overlapping cyan and green circles in (a) correspond
to the same Miller indices, thus confirming the consistency of the indexing
results between SPIND and MOSFLM.



3.4. Software availability, usage and performance

The algorithm development and prototype test of SPIND

were first conducted in MATLAB. For compatibility and

portability, SPIND includes recently updated features

designed for protein serial crystallography and is publicly

available under the GNU General Public License from https://

github.com/LiuLab-CSRC/SPIND. For the user’s conve-

nience, CrystFEL, with SPIND integrated as an alternative

indexing module callable from indexamajig, is also available

from the repository. The CrystFEL data-analysis pipeline

incorporating SPIND is shown in Fig. 11. It is recommended

to use MOSFLM and DirAx etc. for auto-indexing first and

then apply SPIND to improve the indexing rate based on the

reference unit cell given by previous indexers.

The computation time and required memory are mainly

determined by two factors. (1) the length of the structure-

factor list used to generate the reference table. The compu-

tation time and required memory roughly follows N2, where N

denotes the number of Bragg reflections included in the

reference structure-factor list. (2) Error-tolerance threshold in

the vector-searching process (see the Methods section). Larger

threshold values generally lead to longer computation time.

Auto-indexing using SPIND can be very time and memory

demanding for protein crystallography because of the large

number of Bragg reflections used in the reference list. In
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Figure 9
Figures-of-merit for the ClR data set indexed with various indexing algorithms. (a) CC*, (b) SNR, (c) reflection profile radii and (d) Wilson plots. The
keywords ‘refine’ and ‘norefine’ represent the on and off status of the lattice-refinement option in indexamajig of CrystFEL in the indexing process.
SPIND-refine has better figures of merit for this data set than the other methods. Small modal reflection profile radii indicate that orientation determined
by SPIND is often more accurate than MOSFLM with and without orientation refinement.



principle, the reference structure-factor list is generated only

for the resolution range where most of the experimental peaks

fall, to minimize the memory needs and computation time. In

addition, the vector-tolerance threshold can be set to be small

first, and then be adjusted to be larger to increase the indexing

rate with a longer but reasonable computation time. SPIND

also supports parallel computation using multiple CPUs. As an

example, the computation time to auto-index a subset of 4962

patterns from the DOR SFX data set was around 12 core

hours (Intel Xeon E5-2680 v3 at 2.5 GHz).

4. Conclusions

Diffraction patterns that consist of a small number of peaks

often take up a significant portion of the whole data set in

serial protein crystallography. The insufficient number of

peaks along with the poor diffraction quality make these

patterns difficult to analyze using the Fourier transform-based

algorithms. In order to utilize these data and increase the data

efficiency, we have developed a new auto-indexing algorithm,

SPIND. It is based on identifying the Miller indices of five

peaks chosen from each pattern by comparison with the

reference unit cell.

The algorithm was tested first using simulated diffraction

data from I3C microcrystals in random orientations and with

random fluctuations in lattice constants. All 400 simulated

sparse I3C patterns were auto-indexed successfully using only

three to five Bragg peaks per pattern. Each pattern was auto-

indexed in milliseconds, to an accuracy of 0.1� in the Euler

angle defining the crystal orientation. This shows the robust-

ness of the algorithm to lattice inhomogeneity and distortions.

SPIND was then shown to perform as well as established auto-
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Figure 10
Resolution histograms for the ClR data set. (a) Resolution distribution of found peaks for all crystal hits, and distributions of apparent diffraction
resolution determined by indexamajig after indexing by (b) MOSFLM-refine, (c) MOSFLM-norefine, (d) SPIND-refine and (e) SPIND-norefine. The
additional patterns indexed by SPIND are mostly in the lower-resolution region (around 1 nm�1) which is consistent with the resolution distribution of
the found peaks.

Figure 11
Schematic SFX data-analysis pipeline integrating SPIND to CrystFEL.



indexers MOSFLM and DirAx, slightly improving the

indexing of SFX data from microcrystals of a GPCR complex

(CXIDB ID 40). The SNR and self-consistency figures of

merit all slightly improved over the whole resolution range by

using SPIND with orientation refinement in indexamajig.

Finally, SPIND was used to improve a data set from ClR

crystals. The indexing rate using MOSFLM was around 3%

because of the insufficient number of peaks in most of the

patterns, along with poor diffraction quality. Even without

orientation refinement in indexamajig (which requires at least

ten Bragg spots), SPIND improved the merged data quality in

the lower resolution range by indexing additional patterns of

low resolution. However, the overall resolution limit of the

whole data set was ultimately limited by the low diffraction

quality of the crystals.

These results demonstrate that SPIND can index serial

microcrystal diffraction patterns with very few Bragg reflec-

tions (e.g. inorganic microcrystals with small unit cells), and

improve the quality of membrane-protein SFX data. The

growing adoption of serial crystallography methods at

synchrotron beamlines, using continuous injection of a stream

of microcrystals across the beam and fast recording (Standfuss

& Spence, 2017), as well as micro-electron diffraction from

inorganic and macromolecular microcrystals, will also benefit

from the algorithm described here. SPIND is actively being

developed to include an optimized search algorithm, multi-

crystal indexing, orientation refinement and more features for

improving protein SFX indexing. It is written in Python and is

publicly available from https://github.com/LiuLab-CSRC/

SPIND.
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