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Single-particle cryo-electron microscopy (cryo-EM) has recently become a

mainstream technique for the structural determination of macromolecules.

Typical cryo-EM workflows collect hundreds of thousands of single-particle

projections from thousands of micrographs using particle-picking algorithms.

However, the number of false positives selected by these algorithms is large, so

that a number of different ‘cleaning steps’ are necessary to decrease the false-

positive ratio. Most commonly employed techniques for the pruning of false-

positive particles are time-consuming and require user intervention. In order to

overcome these limitations, a deep learning-based algorithm named Deep

Consensus is presented in this work. Deep Consensus works by computing a

smart consensus over the output of different particle-picking algorithms,

resulting in a set of particles with a lower false-positive ratio than the initial set

obtained by the pickers. Deep Consensus is based on a deep convolutional

neural network that is trained on a semi-automatically generated data set. The

performance of Deep Consensus has been assessed on two well known

experimental data sets, virtually eliminating user intervention for pruning, and

enhances the reproducibility and objectivity of the whole process while

achieving precision and recall figures above 90%.

1. Introduction

The advent of direct electron detectors, together with the

development of novel image-processing algorithms, have

brought about a revolution in the field of single-particle

analysis (SPA) in cryo-electron microscopy (cryo-EM; Nogales,

2016). As a result, SPA cryo-EM has been used to determine

the structures of a wide range of protein complexes at near-

atomic resolution (Bartesaghi et al., 2015; Merk et al., 2016;

Banerjee et al., 2016) and is now regarded as a very promising

tool for computer-aided drug design (Rawson et al., 2017).

In order to reconstruct the three-dimensional structure of a

macromolecular complex employing SPA cryo-EM, tens of

thousands of high-quality single-particle projections of the

complex, generally termed particles, are required. These

particles are picked from the micrographs, which generally

suffer from a low signal-to-noise ratio, contamination and

several other artifacts. These problems, along with the huge

number of particles that need to be picked, make manual

selection a tedious, time-consuming and potentially error-

prone step, thus demanding substantial time and user inter-

vention in most cases. On the contrary, automatic particle-

picking algorithms (Adiga et al., 2005; Sorzano et al., 2009;

Voss et al., 2009; Abrishami et al., 2013; Scheres, 2015; Wang et

al., 2016) are well suited for high-throughput workflows, being

able to quickly collect thousands of particles with decent

performance. Nevertheless, the set of false-positive particles
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that are selected by these automatic methods is non-negligible,

typically ranging from 10% to more than 25% (Zhu et al.,

2004). As a consequence, it is common practice in the field to

perform several pruning steps (Razi et al., 2017; Aramayo et

al., 2018) in which a combination of algorithmic approaches

such as particle sorting (Vargas et al., 2013) or two-dimensional

classification (de la Rosa-Trevı́n et al., 2013; Scheres, 2012;

Kimanius et al., 2016; Yang et al., 2012) are employed together

with manual intervention in order to rule out false-positive

particles.

One such approximation is MAPPOS (Norousi et al., 2013).

In order to use MAPPOS, a training set of true particles and

false particles needs to be provided by the user. The particles

are then described by a set of seven features such as phase

symmetry or dark dot dispersion. Finally, a bagging classifier

of different types of algorithms, including decision trees and

k-nearest neighbors, is employed to predict which already

picked particles are good and which are false positives.

Although this methodology showed promising results, it has

not been commonly adopted, probably because the task of

manually picking several hundred of particles, although

doable, is regarded as a time-consuming task and thus other

approaches are used instead. Moreover, the features that are

employed to describe particles can suffer from various short-

comings (Vargas et al., 2013), limiting its applicability.

Recently, there has been a major breakthrough in machine

learning with the development of deep learning (LeCun et al.,

2015; Krizhevsky et al., 2012). Deep-learning approaches have

shown outstanding performances in many different tasks such

as image recognition, natural language processing and language

translation, outperforming not only classical machine-learning

algorithms but also humans in some tasks (He et al., 2015). The

main difference of deep learning with respect to classical

machine-learning approaches is its ability to learn directly

from raw data, which makes the labor-intensive design of

handcrafted features unnecessary (LeCun et al., 2015). Some

of the most popular deep-learning models are convolutional

neural networks (CNNs), which are the state-of-the-art in

artificial vision (http://www.image-net.org/challenges/LSVRC).

CNNs are multilayered feed-forward neural networks which

are fed directly with input images. A typical CNN has two

types of layers: convolutional and fully connected layers.

Convolutional layers consist of convolution and pooling steps

in tandem. The convolution kernels are automatically learned

from training data and the pooling steps perform a down-

sampling of the convolution outputs. Finally, the fully

connected layers are classical neural network layers, the very

last one of which produces an output that measures, in a

classification problem, the probability of the input belonging

to a given class.

Following this line of investigation, in this work we present

Deep Consensus (DC), a deep learning-based approach for the

problem of particle pruning. Our method employs a deep

CNN designed to classify which of the already picked particles

are true particles and which are false positives. In this devel-

opment, we pursued three main objectives: to rule out false

particles, while retaining most of the good particles, to perform

this efficiently and, finally, to reduce manual supervision to

very low levels. In order to train

our CNN, a data set of true and

false particles needs to be elabo-

rated. Although this could be

compiled manually, here we

propose a semi-automatic

approach for the generation of

such a training set. This latter

procedure is based on the fact

that different particle-picking

algorithms work on different

principles, so that the particles

that they select may be substan-

tially different. This considera-

tion would naturally suggest the

exploration of meta classifiers;

this is performed in this work

while everything is simulta-

neously posed in a deep-learning

framework. Instead of consid-

ering particles selected by just

one single picker, we propose

considering all particles selected

by any of the picking algorithms

as candidates and letting the

CNN automatically decide which

particles are good independently

of the algorithm that picked
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Figure 1
Deep Consensus workflow. Deep Consensus takes the coordinates proposed by different particle pickers as
input, from which the intersection (AND set) and the union (OR set) of these coordinates are computed.
Next, it picks random coordinates providing that they do not overlap with the OR set (NEG set). The NEG
and AND sets are then used to train a convolutional neural network (CNN) that will finally classify the
coordinates of the OR set (which is the largest set) as positive particle coordinates or negative particle
coordinates.



them. DC was evaluated using two well known data sets,

EMPIAR-10028 (ribosome; Wong et al., 2014) and EMPIAR-

10061 (�-galactosidase; Bartesaghi et al., 2015), achieving

precision and recall figures above 90%. The DC method is

publicly available through the Scipion (de la Rosa-Trevı́n et

al., 2016) and Xmipp 3 (de la Rosa-Trevı́n et al., 2013) cryo-

EM frameworks.

2. Methods

2.1. Algorithm

The DC method takes the particles picked by several

algorithms as input and produces a new set of high-quality

particles as output. To this end, DC employs a CNN trained on

a set of positive and negative particles collected from the

outputs of several particle pickers (see Fig. 1). Specifically, the

intersection of several sets of particles is defined as the set of

particles with common coordinates in each set and is used as a

positive training set, termed the AND set (see Section 2.3 for

further details). Any particle contained in the AND set has

been picked by all of the pickers and, as a consequence, the

number of false positives included in this set is expected to be

smaller than in any of the single-particle sets. However, the

expected low false-positive rate of the AND set comes at the

cost of reducing the number of selected particles. Similarly, the

union of particles, termed the OR set, is defined by the union

of particles that have been picked by any of the methods. This

set will contain many false positives but also most of the true,

and thus useful, particles. The negative particles (termed the

NEG set) used for training are picked at random coordinates,

ensuring that there is no particle of the OR set that is close to

the randomly picked particle. Additionally, as randomly

picked particles tend to overrepresent empty or uncentered

particles, a set of negative particles comprised of ice, carbon

and other undesired types of contamination can be manually

included in the NEG set (see Section 2.3 for further details).

Finally, once the CNN has been trained using the AND and

NEG sets, the particles of the OR set are evaluated and a score

ranging from 0 to 1 is assigned to each particle. In the absence

of any a priori information, especially if the user wants to run

DC in a fully automated manner, particles with scores of

greater than or equal to 0.5 will be classified as true positives,

whereas particles with scores below 0.5 will be classified as

false positives and thus removed from the final set. At this

point, it is worth noting that better thresholds can be manually

chosen after visual inspection of the final ranking.

It is important to note that even after the careful automatic

construction of the training sets described above, it is a fact

that nothing is perfect and that there will be errors in the

positive and negative training sets (the AND and NEG sets,

respectively). Fortunately, it is well known that deep-learning

approaches tend to be very robust to label noise (Rolnick et

al., 2017; Zhang et al., 2017; Jindal et al., 2016). As a conse-

quence, our CNN is indeed able to learn useful information

from the AND and NEG sets, and the resulting pruned set is

more accurate than any of the original input sets proposed by

the particle pickers (see Appendix C). Moreover, as the

number of putative particles (the OR set) is also larger than

the individual sets obtained from each picker, a larger number

of positive particles can also be recovered while still main-

taining low false-positive particle levels, which results in

substantial gains in speed and reproducibility with respect to

workflows that do not use DC (see Section 3.2).

2.2. Deep convolutional neural network

The core component of Deep Consensus is its CNN. CNNs

are very popular deep-learning models that have shown

outstanding performance in many artificial vision problems.

For a brief introduction to neural networks and CNNs, see

Appendix A.

The architecture of our deep CNN, which we derived after a

thoughtful cross-validation process, is summarized in Table 1.

Our model, implemented using Keras 2.1.5 (https://

github.com/keras-team/keras) and TensorFlow 1.4 (Abadi et

al., 2016), consists of four blocks of two convolutional layers

followed by a batch normalization (Ren et al., 2017) and a

pooling (down-sampling) layer. The output of the last

convolutional block is fed into a single fully connected layer.

Finally, a SoftMax layer is employed to obtain the probability

of an input being either a good particle or a bad particle.

Regularization is performed using a dropout with p = 0.5 after

the fully connected layer, and L2 weight regularization was

applied to each layer with strength 1 � 10�5. All layers were

initialized using the default mechanisms included in Keras.

Network training is performed using the Adam optimizer

(Kingma & Ba, 2014) and cross entropy as a loss function with

default parameters and an initial learning rate of 1 � 10�4

until convergence is detected. A validation set is drawn from

the training set, collecting a random sample of 10% of the set.

When the validation accuracy does not improve for 300

steps (batches), the learning rate is divided by ten. Data

augmentation is performed using random flips and rotations

over the training set at a 1:1 ratio.
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Table 1
The deep convolutional neural network architecture employed in Deep
Consensus.

Layer
No. Layer type

Kernel
size/
step size Shape

1 Input —/— 128 � 128 � 1
2 Conv2D + relu 15/1 128 � 128 � 8
3 Conv2D + batch normalization + relu 15/1 128 � 128 � 8
4 MaxPooling2D 7/2 64 � 64 � 8
5 Conv2D + relu 7/1 64 � 64 � 8
6 Conv2D + batch normalization + relu 7/1 64 � 64 � 16
7 MaxPooling2D 5/2 32 � 32 � 16
8 Conv2D + relu 3/1 32 � 32 � 32
9 Conv2D + batch normalization + relu 3/1 32 � 32 � 32
10 MaxPooling2D 3/2 16 � 16 � 32
11 Conv2D + relu 3/1 16 � 16 � 64
12 Conv2D + batch normalization + relu 3/1 16 � 16 � 64
13 AveragePooling2D 4/2 8 � 8 � 64
14 FullyConnected + relu + dropout (p = 0.5) 512/— 512
15 SoftMax 512/— 2



2.3. Training-set collection: consensus of coordinates and
random picking

Given several sets of coordinates picked by different

particle pickers, Deep Consensus (DC) firstly computes the

intersection and the union of these sets of coordinates (the

AND and OR sets, respectively). The OR set is composed of

all of the coordinates picked by any picker. The AND set is

obtained considering the Euclidean distances between each

coordinate of the first set and all of the coordinates of the

second set; if the distance between a particular particle is

smaller than the 10% of the particle size, the average co-

ordinate is added to the AND set. When more than two sets of

coordinates are used, the previous strategy is repeated

considering the coordinates of the AND set and the coordi-

nates of the third set, then the fourth set, and so on.

The set of negative particles used for training (the NEG set)

is collected from randomly picked coordinates. As some of

these coordinates may correspond to actual particles, we

remove those coordinates that are close (closer that 50% of

the particle size) to any coordinate included in the OR set. We

filter out coordinates using the OR set instead of the AND set

because there are many more true-positive particles in the OR

set than in the AND set, and we prefer to ensure that most of

the particles included in the NEG set are negative particles.

Random picking strategies tend to obtain mostly empty

particles or noncentered particles. However, particles

containing ice or picked in the carbon regions are under-

represented. For this reason, we allow the user to provide a

complementary set of negative particles, such as that available

at http://campins.cnb.csic.es/deep_cons, that will be merged

with the NEG set. In the case that the user does not provide

such a set, as in the examples presented in this work, we

alternatively employed a set of negative particles that was

semi-automatically collected by applying Xmipp particle

sorting to the AND set and considering particles with Z-scores

in the top 1%, which typically correspond to the worst picked

particles.

2.4. Evaluation: testing-set elaboration

In order to evaluate the performance of our method, we

employed precision-recall and receiver operating character-

istic (ROC) curves and computed the areas under both curves

for each data set. Similarly, we estimated the accuracy, preci-

sion, recall and Matthews correlation coefficient (MCC) of DC

predictions using the value that maximizes the MCC as a

threshold. Such evaluations require a testing data set of

particles for each evaluated case. We elaborated these by

employing the particles deposited in EMPIAR as positive

particles and randomly picked particles as negative particles,

as performed in training-set generation. With the aim of

improving the quality of our testing set, for each complex we

manually curated both the positive and the negative particles

of the initial testing set to a subset of 2000 positive and 2000

negative particles in which we also included ice, contamination

etc. similarly as was performed in training-set generation.

2.5. Evaluation: resolution estimation

The goodness of the pruning performed by DC was also

assessed by estimating the resolution values reached by the

selected particles. To this end, we employed the RELION

auto-refine algorithm (Scheres, 2012; Kimanius et al., 2016)

using the set of particles that we collected internally in DC

(AND/OR sets) as input as well as the DC-selected set (DC-

retained set) and the filtered-out set of particles (DC-pruned

set). The initial volumes required for auto-refine were down-

loaded from EMDB (Tagari et al., 2002) entries EMD-2984

and EMD-2984 filtered at 60 Å. In order to obtain the DC-

retained and DC-pruned sets, a threshold of 0.5 was employed.

Consequently, the DC-retained set is composed of all of the

particles originally found in the OR set with a DC score

greater than or equal to 0.5 and the DC-pruned set contains

the particles included in the OR set with DC scores smaller

than 0.5.

2.6. Evaluation: two-dimensional classification and class
averages of different particle sets

The class averages displayed in Section 3.1.3 were obtained

using the RELION two-dimensional classification algorithm

(Scheres, 2012; Kimanius et al., 2016) on the particles of the

OR, AND and DC-retained sets (a threshold of 0.5 was set).

We only show the four classes with the most particles. All 32

classes obtained in the execution of the RELION two-

dimensional classification are included in Appendix B.

2.7. Comparison with other pruning approaches

DC was compared with other pruning methodologies in

terms of achieved resolution and execution time. Resolution

estimation was performed as explained in Section 2.5. Two-

dimensional classification was performed using RELION-2.0.

Other two-dimensional classification algorithms such as cl2d

in Xmipp (Sorzano et al., 2010) or ISAC in SPARX (Yang et

al., 2012) were also initially considered, but since they were

much slower than RELION-2.0 on GPUs and their use was

only for comparison purposes and was not at the core of our

newly proposed method, they were not finally included in this

work. Both RELION two-dimensional classification and DC

were executed using one Nvidia 1070 GTX graphics card,

while RELION auto-refine was executed using two Nvidia

1070 GTX graphics cards. DC-retained particles were selected

with a 0.5 threshold.

3. Results and discussion

3.1. Performance evaluation

The performance of our approach has been assessed on two

publicly available data sets: EMPIAR-10028 (ribosome; Wong

et al., 2014) and EMPIAR-10061 (�-galactosidase; Bartesaghi

et al., 2015). In both cases we compiled the DC input sets using

two well established algorithms: the Xmipp autopicker

(Abrishami et al., 2013) and the EMAN2/SPARX Gaussian

picker (Tang et al., 2007; Hohn et al., 2007). We carried out
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three different quality-assessment tests on the obtained

results: a statistical analysis of manually curated testing sets of

particles, a visual inspection of two-dimensional class averages

and an evaluation of the final resolution obtained from the

different sets of particles.

3.1.1. Statistical analysis. We evaluated the performance of

DC by measuring several statistical scores on a manually

curated testing set derived from particles deposited in the

EMPIAR database (Iudin et al., 2016; see Section 2.4 for

details of the testing-set collection) and we compared it with

the individual performance of each of the particle pickers that

were used for input to DC. Table 2 displays how DC obtained

almost perfect classification metrics for the two evaluated data

sets, with precision and recall values above 0.9. Similarly, the

curves displayed in Fig. 2 are close to a perfect classification,

indicating that DC was able to distinguish positive particles

from negative particles outstandingly well. Finally, as can be

appreciated from Table 2, DC achieved better results than

those obtained by the individual particle pickers used as input,

which proves that DC has succeeded in going beyond merely

combining the two sets of input particles.

3.1.2. Resolution analysis. At this point, we wanted to

better understand the new scenario that DC brings to the SAP

field with a very simple and direct experiment: what are the

final resolutions of the different cryo-EM maps obtained from

each of the particle sets? For simplicity, we always use the

same reconstruction method (Scheres, 2012; Kimanius et al.,

2016) with all parameters set to the same values for the

different runs (see Section 2.5). In this way, the single differ-

ence between the runs will be the different data sets of

particles that are being fed into

the algorithm. Table 3 compares

the different resolution values

computed over the different

particle sets.

From inspection of this table, it

is very clear that the resolution

obtained using the OR set of

particles (those picked by at least

one of the pickers) is comparable

or worse than the resolution

obtained using the AND set (the

consensus data set among the

pickers), even if this latter set

contains an order of magnitude

fewer particles than the former

set. However, many good parti-

cles are missing in the small AND

set, which is shown clearly by the

fact that if we were to use the

results of only ‘the best picker’

(we refer to the picker that

performed the best in these two

data sets, which was the Xmipp

picker) the resolution would still

be better than that obtained with

the small AND particle set.

However, the power of DC

becomes evident when viewing

the results presented in the two

leftmost columns. Indeed, when

the particles retained by DC are

employed, the resolution of the

maps always increases over that
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Table 2
Statistical measurements of Deep Consensus and the performance of the
input particle pickers.

MCC, Matthews correlation coefficient; ACC, accuracy; ROC-auc, area under
the ROC curve; PR-auc, area under the precision-recall curve; NA, not
available; DC, Deep Consensus; Xmipp, Xmipp autopicker; Gaussian,
EMAN2/SPARX Gaussian picker. MCC, precision and recall were computed
at the threshold that maximizes the MCC for DC and at the suggested
threshold for Xmipp and Gaussian.

Algorithm
EMPIAR
data set MCC ACC Precision Recall ROC-auc PR-auc

DC 10061 0.889 0.944 0.927 0.965 0.982 0.973
DC 10028 0.942 0.971 0.958 0.984 0.993 0.989
Xmipp 10061 0.782 0.893 0.898 0.849 NA NA
Xmipp 10028 0.818 0.908 0.872 0.937 NA NA
Gaussian 10061 0.697 0.845 0.778 0.904 NA NA
Gaussian 10028 0.726 0.871 0.798 0.860 NA NA

Figure 2
Deep Consensus precision-recall and ROC curves computed from testing sets. Red, the EMPIAR 10028
data set (ribosome); blue, the EMPIAR 10061 data set (�-galactosidase). The area under the curve (auc) is
given in parentheses.

Table 3
Resolution achieved in both data sets when refining different sets of particles.

OR, particles selected by any picker; AND, particles selected by both pickers; BPP, particles selected by the picker
that obtained the best results; DC-pruned, particles ruled out by Deep Consensus; DC-retained, particles selected
as good by Deep Consensus; R, resolution; N, number of particles.

OR AND BPP DC-retained DC-pruned

EMPIAR
data set R (Å) N R (Å) N R (Å) N R (Å) N R (Å) N

10061 3.76 231251 3.32 25600 2.92 117047 2.83 125586 12.74 105665
10028 3.83 119171 3.87 67043 3.70 97561 3.65 88622 33.50 30549



achieved when using any other data set, including that formed

by the particles from the best-performing picking algorithm.

At the same time, it is very clear that those particles rejected

by DC (which are between 20% and greater than 30% of the

OR data set) were creating very important inconsistencies in

the whole reconstruction process, simply because their

resulting map has a resolution that is an order of magnitude

worse than that obtained with any other data set.

Finally, if we also consider the number of particles included

in the AND, OR and DC-retained sets, it seems clear that our

method has been able to go beyond the AND set by rescuing

from the OR set many particles that are not included in the

AND set but are still positive particles and thus good candi-

dates to achieve a better resolution map. This also proves that

our neural network, which has been trained on a reduced and

slightly mislabeled training set, is able to learn and generalize

to other particles that were not included in the training set.

3.1.3. Two-dimensional classification and class averages of
different particle sets. In order to obtain another assessment

of the value of DC, we performed a two-dimensional classifi-

cation using the same data sets as presented in the previous

section and compared the classes visually. As before, we used

the same processing parameters in all runs, only changing the

data sets. Fig. 3 shows the four most populated two-dimen-

sional class averages obtained from the particles in the AND,

OR and DC-retained data sets, so that a visual (qualitative)

assessment can be performed (the averages of all classes have

been included in Appendix B). Within the limits of this

assessment (and considering that the four major classes from

each data set do not necessarily have to present the complex in

the same orientation, especially for data sets with a good

angular coverage, as is the case in our examples), at the level

of high-resolution content the classes obtained from the DC-

retained particles are the best, followed by those from the

AND data set, while those from the OR data set are very poor.

These results support the notion that DC has been able to

prune many of the bad particles contained in the OR set but

yet recovered many more particles than those included in the

AND set.

3.2. Comparison with other pruning approaches

In SPA cryo-EM there is currently a trend towards selecting

as many particles as possible at the beginning of the image-

processing workflow (Wang et al., 2016) despite the inclusion

of many false positives. These false-positive particles are

expected to be ruled out in the subsequent steps of the image-

processing workflow, especially in the very time-consuming

steps of two-dimensional and three-dimensional classification,

which are certainly demanding of computational resources but

also rely on strong human intervention, a factor that intro-

duces subjective decisions into the analysis workflow. Conse-

quently, and this is one of the motivations of this work,

processing workflows can be substantially accelerated and

automated by applying precise pruning methods such as DC at

the very beginning of the image-processing workflow in such a

way that the initial set of particles will be smaller but better.

In order to grasp how useful our approach may be, we have

compared DC with other techniques that are commonly

employed as pruning steps, specifically Z-score particle sorting

(Vargas et al., 2013) and two-dimensional classification

(Scheres, 2012; Kimanius et al., 2016). Comparisons have

focused on the execution time and on the quality of the

selected particles (see Section 2.7 for details).

Owing to their similarities, we would have liked to compare

DC with MAPPOS (Norousi et al., 2013); however, as neither
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Figure 3
Averages of the major classes obtained from the particles in the AND, OR and DC-retained data sets, all computed using the RELION two-dimensional
classification algorithm.



the program nor the particles that were used to evaluate

MAPPOS are available, we were not able to do so. Never-

theless, it is worth noting that our approach exhibits a very

important advantage over MAPPOS: the semi-automatic

training-set generation. Moreover, the precision-recall values

reported in the MAPPOS publication (around 0.9 and 0.7,

respectively) are noticeably worse than those that we have

measured in this work and, although not directly comparable,

they are in line with the idea that deep-learning algorithms

tend to outperform conventional machine-learning approa-

ches.

When DC was compared with the Z-score particle-sorting

approach (Vargas et al., 2013), using default thresholds for

both methods, DC was able to prune many more particles.

Moreover, the resolution obtained by DC was substantially

better than that obtained when using only Z-score particle

sorting.

A more detailed comparison was performed between the

relative performance of DC and a ‘typical’ step of particle

pruning by two-dimensional classification. Naturally, pruning

by two-dimensional classification requires user intervention,

which in the case of the results presented in this manuscript

was achieved by a member of the laboratory experienced in

dealing with many experimental data sets. Still, there is an

intrinsic ‘human variability and subjectivity’ factor in this

procedure that is unavoidable (and that DC aims to abolish).

In this way, DC was able to prune slightly more particles than

two-dimensional classification, while preserving essentially the

same resolution values (see Table 4). Similarly, in order to

study the composition of the ruled-out sets of particles, we

measured the resolution that was achieved by these sets using

the same evaluation procedure for both DC and two-

dimensional classification (see Table 2). Thus, we measured a

resolution of�12 Å for the EMPIAR-10061 data set (12.7 and

11.4 Å, respectively), whereas a resolution of �32 Å was

measured for the EMPIAR-10028 data set (33.5 and 31.6 Å,

respectively); the resolution was better for EMPIAR-10061,

probably because the set of discarded particles was larger, but

was still similar for both DC and two-dimensional classifica-

tion. Accordingly, from the ‘final resolution’ point of view, DC

and pruning by two-dimensional classification achieved similar

results, suggesting that they could be employed inter-

changeably. However, under our benchmarking conditions

(see Section 2.7) the running time of DC was approximately

five times faster than a typical two-dimensional classification

step while not introducing any human subjectivity, leading to

automation; these are two very valuable parameters in order

to increase data processivity and reproducibility in cryo-EM.

4. Conclusions

In this work, we describe Deep Consensus, a deep-learning

approach for the pruning of cryo-EM particles. Our method

employs a convolutional neural network (CNN) trained on a

set of true and false particles. Contrary to most deep-learning

setups, for which data sets need to be carefully compiled by

human experts, we employed a semi-automatically collected

training set. This training set is obtained by computing the

consensus outputs of multiple particle-picking algorithms.

Thus, the positive particles used for training are obtained by

taking the intersection of the output coordinates (allowing

some error margins), whereas the negative particles are picked

at random coordinates that are distant from any of the

particles picked by any method (union). Finally, the particles

contained in the union are classified as positive or negative by

the trained CNN and those classified as negative are removed

from the initial set.

We have shown that the Deep Consensus approach is

considerably robust to mislabeling, and thus our method is

able to be trained using sets that contain a significant fraction

of false positives and false negatives. Indeed, as shown in

Section 3.1, we have proven that Deep Consensus was able to

learn from the semi-automatically generated sets and was able

to identify a large number of positive particles that were not

included in the initial training set, while removing many of the

negative particles selected by the picking algorithms.

Finally, we have compared Deep Consensus with other

pruning strategies and showed that it works better, or at least

as well, as commonly applied methods. Moreover, Deep

Consensus provides an important advantage, since it accel-

erates the image-processing workflow while avoiding user

subjectivity, so that it can be fully standardized and auto-

mated. As a result, Deep Consensus seems to be a very

promising approach for application at the very beginning of

cryo-EM workflows, just after the step of particle picking.

Consequently, we consider that we have achieved our aim of

helping the user to accelerate and automate one of the most

critical steps in cryo-EM image processing, particle pruning,
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Table 4
Comparison of different pruning approaches.

DC-retained, particles selected as good by Deep Consensus; Z-score-retained, particles that were selected as good using Xmipp particle sorting; R-2D-retained,
particles that were selected as good by an expert after using RELION two-dimensional classification; R, resolution; PR, percentage of retained particles compared
with the total number of particles (231 251 and 119 171, respectively); T, running time of the pruning algorithm; TT, total running time for the pruning and
RELION auto-refine steps.

DC-retained Z-score-retained R-2D-retained

EMPIAR
data set R (Å) PR (%) T (h) TT (h) R (Å) PR (%) T (h) TT (h) R (Å) PR (%) T (h) TT (h)

10061 2.83 54.3 3.9 20.3 3.72 95.2 2.0 25.1 2.80 56.9 23.1 40.2
10028 3.65 74.4 2.7 12.0 3.77 94.9 1.4 14.6 3.65 85.6 14.8 27.6



thus increasing objectivity and reproducibility in the initial

steps of processing and at the same time facilitating the

widespread usage of cryo-EM image-processing workflows by

users with many diverse backgrounds.

Deep Consensus is publicly available from Xmipp (http://

xmipp.cnb.csic.es) and Scipion (http://scipion.cnb.csic.es).

APPENDIX A
An introduction to convolutional neural networks

Neural networks (NNs) are bioinspired machine-learning

models that, after several years of modest use, have been

rebirthed under the name deep learning. NN models are

composed of several layers of neurons (also known as hidden

units) that are connected one after another. Typically, NN

architectures are constituted of an input layer, an output layer

and several hidden layers in between (see Fig. 4). Each neuron

of the input layer represents an input variable of a data

example (for example the intensity of one pixel), whereas the

neurons of the output layer produce the predictions associated

with the data example. Each of the neurons of a hidden layer

computes a weighted average of its inputs (x1, x2, . . . , xn) and

applies a nonlinear function to it, typically relu (1). The inputs

of a neuron are the outputs of other neurons, which come from

the previous layer or directly from the input data if the neuron

belongs to the first hidden layer. The output of the neural

network is also a weighted average of the last hidden layer

units (2), but in this case it is converted to probabilities using a

SoftMax function (3).

hiðx1; x2; . . . ; xnÞ ¼ maxð0;wh
i0 þ wh

i1x1 þ wh
i2x2 þ . . .þ wh

inxnÞ;

ð1Þ

yiðx1; x2; . . . ; xnÞ ¼ SoftMaxðwo
i0 þ wo

i1h1 þ wo
i2h2 þ . . .þ wo

inhnÞ;

ð2Þ

SoftMaxðoiÞ ¼
expðoiÞP

j

expðojÞ
: ð3Þ

The predictive power of an NN comes from its ability to learn

from a labeled set of examples (a training set). During the NN

training process, the weights associated with each neuron are

calculated to minimize a cost function that measures the

differences in the training-element labels and their predicted

probabilities. For classification problems, such as that consid-

ered in this work, the cost function accounts for misclassifi-

cation of the training examples [the difference between the

neural network prediction y(X j) and the training label l j for an

example j] and thus the model will tend to classify training

examples correctly (4):

EðWÞ ¼ �
1

m

Pm
j¼1

lj log½yðXjÞ� þ ð1� ljÞ log½1� yðXjÞ�

( )
: ð4Þ

However, classifying training examples correctly does not

guarantee that the model will perform well on data that have

not being used for training. Indeed, this lack of generalization

to new data when performance in the training set is good is

known as overfitting and is a common problem that, until

recent developments, had limited the applicability of NNs.

One of these developments is the convolutional neural

network (CNN) architecture, which is currently the preferred

choice when facing artificial vision problems such as image

classification. The main difference of CNN convolutional

layers (CNLs) with respect to regular NN layers, which are

generally called fully connected layers (FCLs), is the

connectivity pattern of the hidden neurons. Thus, whereas

FCL neurons are connected to all neurons of the previous

layer independently of the dimensions of the input, CNL

neurons are locally connected to windows of neurons in the

previous layers. As each neuron slides over all possible

windows, these layers perform a convolution with self-learned

kernels over the outputs of the previous layers, and this is the

reason for the name of this architecture. This difference makes

CNNs particularly well suited to image-related problems

because the local connectivity of neurons in CNLs produces

layer output images, and thus they retain the structure of the

input through the different layers, as the input and the output

of a CNL are both images. Additionally, the total number of

parameters of a CNN is much smaller than the number of

parameters of a fully connected network and thus it is less

prone to overfitting, leading to better performance. For a

complete review, see LeCun et al. (2015).

APPENDIX B
Class averages obtained from the different data sets
using RELION two-dimensional classification

In this section we show the 32 class averages that were

obtained after RELION two-dimensional classification

executed with default parameters. Classes are sorted from

major to minor. The number of particles that belong to each

class is shown below each class image.
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Figure 4
Artificial neural network for binary classification. Xj = (x1

j, xi
j, . . . , xn

j) is
one example to be classified by the network. hi

j is the output of a hidden
neuron, computed as shown in (1). Yj = (y1

j, y2
j) is the output of the

network for the example Xj computed using (2).
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Figure 6
Class averages for the OR set (picked by any particle picker).

Figure 7
Class averages for the DC-retained set (selected by Deep Consensus).

Figure 5
Class averages for the AND set (picked by all particle pickers).

Figure 8
Class averages for the AND set (picked by all particle pickers).



B1. Data set 1: EMPIAR 10028

Figs. 5, 6 and 7 show the class averages for the AND set

(picked by all particle pickers), the class averages for the OR

set (picked by any particle picker) and the class averages for

the DC-retained set (picked by any particle picker), respec-

tively, for this data set.

B2. Data set 2: EMPIAR 10064

Figs. 8, 9 and 10 show the class averages for the AND set

(picked by all particle pickers), the class averages for the OR

set (picked by any particle picker) and the class averages for

the DC-retained set (picked by any particle picker), respec-

tively, for this data set.

APPENDIX C
Tolerance of Deep Consensus to mislabeling

In order to understand how DC behaves when the training set

is affected by mislabeling noise, we carried out a set of

experiments in which the CNN that DC employs was trained

using a synthetic training set (instead of the AND set) derived

from a ground true set of true particles and false particles that

had been manually curated. In each of the experiments, we

introduced different levels of label corruption, understanding

the corruption level as the fraction of particles that have been

incorrectly labeled. The training set contained a total number

of 3000 putative true particles and 3000 putative false particles,

with all putative particles being correct in the case of 0%

corruption and half of them being incorrect in the case of 50%

corruption.

As can be appreciated from Table 5, DC shows a remark-

able tolerance to mislabeling, achieving a similar performance

at a corruption level of 25% to that obtained when no

mislabeling is present. Similarly, it also seems clear that the

statistics obtained for a corruption level of 30% are compar-

able to the statistics obtained for the single-particle pickers

that we employed for the compilation of the AND set (see the

main text and Table 2), and thus a 30% corruption level could

be thought of as the failure threshold for the AND set in order

to improve the results of the individual particle pickers.

Fortunately, obtaining such accuracy levels for the AND set is

theoretically easy because of the different natures of the

different particle pickers. Indeed, the intersection of two

independent partitions of a data set that display 50% accuracy

each is expected to show 75% accuracy at the cost of halving

the number of included particles. Of course, this theoretical

calculation only holds for ideal systems, but it still helps to

understand how the intersection allows better training sets to

be obtained provided that the size of the intersection is large

enough.

In our experiments, we have found that the intersection of

the output of the two particle pickers can be relatively small

compared with the total number of particles picked by each

(data not shown). For this reason, we have also studied the

impact of the number of particles on the performance of DC at

different corruption levels. Table 6 shows the precision and

recall estimated for each scenario. Two interesting conclusions

research papers

IUCrJ (2018). 5, 854–865 Ruben Sanchez-Garcia et al. � Deep Consensus 863

Figure 9
Class averages for the OR set (picked by any particle picker).

Figure 10
Class averages for the DC-retained set (selected by Deep Consensus).



can be drawn. Firstly, at a corruption level of 30%, DC is able

to function well using a small training set of size 2000 (1000

positives and 1000 negatives). Secondly, the impact of mis-

labeling noise can be severely reduced depending on the

training-set size. This second conclusion, which is in line with

that stated in Rolnick et al. (2017), together with the theore-

tical result mentioned above, provides the key to under-

standing the reliability of DC: the accuracy of the individual

particle pickers is less relevant (to a certain level) than the size

of the intersection. Consequently, when the intersection of the

particle pickers represents an important fraction of the total

number of picked particles, the results obtained by DC are

expected to be good.

Acknowledgements

We would like to thank Dr Joaquin Oton for his helpful

advice.

Funding information

The following funding is acknowledged: Ministerio de Econ-

omı́a, Industria y Competitividad, Gobierno de España [grant

No. BIO2016-76400-R(AEI/FEDER, UE)]; Comunidad de

Madrid (grant No. S2017/BMD-3817); Instituto de Salud

Carlos III (grant No. PT13/0001/0009; grant No. PT17/0009/

0010); Horizon 2020 [grant No. Elixir – EXCELERATE

(INFRADEV-3-2015, Proposal 676559)]; Ministerio de

Economı́a, Industria y Competitividad, Gobierno de España

(contract No. Juan de la Cierva-E-28-2018-0015407 to Joan

Segura); Ministerio de Educación, Cultura y Deporte (scho-

larship No. FPU-2015/264 to Ruben Sanchez-Garcia).

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu,
Y. & Zheng, X. (2016). OSDI’16: Proceedings of the 12th USENIX
conference on Operating Systems Design and Implementation, pp.
265–283. Berkeley: USENIX Association.

Abrishami, V., Zaldı́var-Peraza, A., de la Rosa-Trevı́n, J. M., Vargas,
J., Otón, J., Marabini, R., Shkolnisky, Y., Carazo, J. M. & Sorzano,
C. O. S. (2013). Bioinformatics, 29, 2460–2468.

Adiga, U., Baxter, W. T., Hall, R. J., Rockel, B., Rath, B. K., Frank, J.
& Glaeser, R. (2005). J. Struct. Biol. 152, 211–220.

Aramayo, R. J., Willhoft, O., Ayala, R., Bythell-Douglas, R., Wigley,
D. B. & Zhang, X. (2018). Nat. Struct. Mol. Biol. 25, 37–44.

Banerjee, S., Bartesaghi, A., Merk, A., Rao, P., Bulfer, S. L., Yan, Y.,
Green, N., Mroczkowski, B., Neitz, R. J., Wipf, P., Falconieri, V.,
Deshaies, R. J., Milne, J. L. S., Huryn, D., Arkin, M. &
Subramaniam, S. (2016). Science, 351, 871–875.

Bartesaghi, A., Merk, A., Banerjee, S., Matthies, D., Wu, X., Milne,
J. L. S. & Subramaniam, S. (2015). Science, 348, 1147–1151.

He, K., Zhang, X., Ren, S. & Sun, J. (2015). Proceedings of the IEEE
International Conference on Computer Vision, pp. 1026–1034.
Piscataway: IEEE.

Hohn, M., Tang, G., Goodyear, G., Baldwin, P. R., Huang, Z.,
Penczek, P. A., Yang, C., Glaeser, R. M., Adams, P. D. & Ludtke,
S. J. (2007). J. Struct. Biol. 157, 47–55.

Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. &
Patwardhan, A. (2016). Nat. Methods, 13, 387–388.

Jindal, I., Nokleby, M. & Chen, X. (2016). 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 967–972.
Piscataway: IEEE.

Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. (2016).
Elife, 5, e18722.

Kingma, D. P. & Ba, J. (2014). arXiv:1412.6980.

research papers

864 Ruben Sanchez-Garcia et al. � Deep Consensus IUCrJ (2018). 5, 854–865

Table 6
Deep Consensus precision and recall on testing sets when trained using synthetic AND sets of different sizes with different levels of mislabelling noise.

R, ribosome data set (EMPIAR-10028); G, �-galactosidase data set (EMPIAR-10061); #Partic, number of true particles included in the data set; corrupt,
corruption level. Each cell displays the precision and recall measured in each condition.

#Partic 3000 2000 1000 500

Corrupt R G R G R G R G
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45% 0.705/0.762 0.695/0.817 0.662/0.698 0.610/0.701 0.602/0.777 0.581/0.731 0.625/0.709 0.578/0.604

Table 5
Deep Consensus performance on testing sets when trained using synthetic AND sets with different levels of mislabeling noise.

R, ribosome data set (EMPIAR-10028); G, �-galactosidase data set (EMPIAR-10061); MCC, Matthews correlation coefficient; ACC, accuracy; ROC-auc, area
under the ROC curve. MCC, precision and recall were computed at the threshold that maximizes the MCC.

MCC Precision Recall ACC ROC-auc

Corruption level R G R G R G R G R G

0% 0.934 0.884 0.965 0.937 0.952 0.927 0.982 0.961 0.992 0.969
25% 0.906 0.861 0.946 0.928 0.948 0.914 0.965 0.950 0.987 0.967
30% 0.875 0.851 0.923 0.918 0.942 0.914 0.949 0.944 0.978 0.964
40% 0.722 0.672 0.845 0.834 0.872 0.786 0.870 0.849 0.926 0.878
45% 0.435 0.264 0.710 0.652 0.736 0.527 0.720 0.630 0.776 0.663
50% 0.087 0.077 0.563 0.574 0.598 0.646 0.536 0.531 0.523 0.491
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