
research papers

420 https://doi.org/10.1107/S2052252517005103 IUCrJ (2017). 4, 420–430

IUCrJ
ISSN 2052-2525

CHEMISTRYjCRYSTENG

Received 5 February 2017

Accepted 3 April 2017

Edited by C. Lecomte, Université de Lorraine,
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A cross-validation method is supplied to judge between various strategies in

multipole refinement procedures. Its application enables straightforward

detection of whether the refinement of additional parameters leads to an

improvement in the model or an overfitting of the given data. For all tested data

sets it was possible to prove that the multipole parameters of atoms in

comparable chemical environments should be constrained to be identical. In an

automated approach, this method additionally delivers parameter distributions

of k different refinements. These distributions can be used for further error

diagnostics, e.g. to detect erroneously defined parameters or incorrectly

determined reflections. Visualization tools show the variation in the parameters.

These different refinements also provide rough estimates for the standard

deviation of topological parameters.

1. Introduction

Although Philip Coppens (2005) wrote that ‘Charge densities

[have] come of age’, experimental charge-density studies still

depend heavily on the amount and quality of the measured

data. Additionally, there is no published investigation of

whether or not the refinement of all possible parameters might

lead to overfitting of the data, because the old benchmark of

the ‘independent atom model’ (IAM), which should not run

below the 10:1 data-to-parameter ratio to keep the problem

sufficiently over-determined, is hardly violated even with a

demanding charge-density investigation. In a routine IAM

refinement only nine parameters, three positional and six

anisotropic displacement parameters, are necessary to model

the structure, while in a multipole refinement (MM) via the

Hansen–Coppens formalism (Hansen & Coppens, 1978) many

more parameters are needed to describe the asphericity of the

electron density distribution

�atðrÞ ¼Pc�cðrÞ þ Pv �
3�vð�rÞ

þ
Xlmax

l¼0

�03Rlð�
0rÞ
Xl

m¼0

Plm�dlm�ð�; ’Þ: ð1Þ

Here, the density is divided into a core density, a spherical

valence density and an aspherical valence density. The para-

meters � and �0 are used to describe the expansion and

contraction of the density. This approach requires up to 27

(= 25 + 2) additional parameters per atom for multipole

populations up to the hexadecapole level, and the � and �0

parameters. Some of the parameters are highly correlated, like

the monopole population and the � parameter of one

particular atom. The valence density is mainly described by

low-order data, but to derive proper thermal displacement
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parameters high-resolution low-temperature data are needed.

Due to the development of more intense X-ray sources, more

sensitive area detectors and improved cryogenic crystal

cooling techniques, the data quality has improved significantly

so that even an anharmonic description of the thermal motion

is increasingly reported in the literature (see e.g. Dos Santos et

al., 2016; Poulain et al., 2014; Domagała et al., 2014), requiring

even more parameters per atom. In experimental charge-

density investigations, high-resolution data up to at least

1.0 Å�1 in sin(�)/� are necessary. Therefore, the data-to-

parameter ratio is usually higher than for a routine IAM

refinement. This ratio alone might suggest that overfitting is

not of any concern in experimental charge-density determi-

nations. However, this is not necessarily true because not all

reflections contribute to all parameters equally, e.g. only the

low-order reflections determine the valence density. Conse-

quently, the increasing number of parameters might result in a

significant drop in the R value without improving the model. A

statistical method to detect that phenomenon is cross-valida-

tion. In this model-validation technique, a sample population

of data is divided into complementary subsets. One subset (the

‘training’ or ‘work’ set) is used to derive a model, while the

other is used to validate the model (the ‘validation’ or ‘test’

set). In macromolecular crystallography this is known as the

Rfree concept (Brünger, 1992, 1997). Here, the measured data

are divided into a work set (often 95–90% of all data) and a

test set (the remaining 5–10%). The model is refined against

the work set, while the test set is never used for refinement but

only to calculate an R value, the Rfree value. Adding para-

meters will lead to a decrease in Rwork , but only sensible added

parameters will also decrease Rfree. An increasing Rfree is an

unerring sign of overfitting. After determination of all sensible

parameters, a final refinement can then be performed against

all data.

In charge-density investigations, the following points need

to be addressed:

(i) To adjudicate on overfitting, just the differences in Rfree

and Rwork after introducing more parameters are monitored.

Hence, we are not interested in their absolute values, which is

different to the approach of protein crystallographers.

(ii) Determination of Rwork and Rfree in different resolution

shells can be helpful because different regions of reciprocal

space are of varying importance for different kinds of para-

meter.

(iii) The number of reflections in the validation set can be

crucial. If the number is too small, the standard deviation of

Rfree is too large. The standard deviation of the free R value is

given approximately by Rfree/(2n)1/2 (Tickle et al., 2000), where

n is the number of reflections in the test set. As the R values,

and especially the differences in the R values, are very small,

this standard deviation is normally too high to provide a

conclusive answer from a single Rfree value. If n is too large,

the completeness of the training set is too small, leading to

biased models. In statistics, this is solved by k-fold cross-vali-

dation, which means that the sample is divided into k subsets.

One subset is used as a test set, while the other k � 1 sets give

the model. This process is repeated k times with a different

subset as the test set. Hence, all data are used for both model

deriving and validation. For a charge-density analysis this

means that e.g. 20 test sets are produced. Every reflection is

considered once in a test set and otherwise in the work set.

This method was previously employed to validate the

weighting of restraints (Paul et al., 2011; Zarychta et al., 2011)

but should also be valid to judge e.g. local symmetry

constraints, as the program XD (Volkov et al., 2006) does not

offer the opportunity to introduce restraints. A final refine-

ment is then of course employed against all available data. Out

of the k different refinements the mean values h�Rfreei can be

calculated. Instead of checking h�Rfreei, a new value Rcross is

defined that takes into account all test sets of all k refinements.

Here, all differences between Fo and Fc for all reflections as

validation reflections are used, therefore it is the Rfree for all

reflections as validation

Rcross ¼

P
jF2

o � F2
c jP

F2
o

: ð2Þ

A similar procedure has recently been described for macro-

molecules (Luebben & Gruene, 2015).

(iv) Normally the test set is chosen randomly, but caution is

to be advised in non-centrosymmetric space groups or if

pseudo-symmetry is present, as the Friedel pairs cannot be

considered to be independent observations. The Friedel pairs

or pseudo-symmetrically related reflections must be either

both in the training set or both in the validation set.

(v) The validation set must be unbiased. That means it must

never be used for the refinement unless the parameters are

‘shaken’ before the cross-validation refinement starts.

For the k different models, the distribution of each refined

parameter v can be checked and compared with the value vtotal

including its s.u., stotal, derived from a refinement against the

complete data set. Model bias by omission of data can then be

easily identified by outliers, e.g. values vi that deviate by more

than three times stotal from vtotal. If all k refinements are

independent, one should find a normal distribution with a

mean value vmean that is identical to vtotal, and a standard

deviation smean that equals stotal divided by a correction factor

that can be derived from Cochran’s theorem (Cochran &

Wishart, 1934), e.g. 0.973 for ten test sets, 0.987 for 20 test sets

and 0.995 for 50 test sets. However, as each refinement uses

(k � 1)/k � nd reflections of the total nd data, the refinements

are not independent and therefore the expected standard

deviation smean is smaller than stotal. As a converse argument,

smean > stotal indicates problems in the refinement.

Subsequent to a refinement with no clear indication of

overfitting, the distribution of topological QTAIM (quantum

theory of atoms in molecules; Bader, 1990) parameters like the

density �, Laplacian r2� and ellipticity " at the bond critical

points should also be checked. Following the same arguments

as above, we can estimate lower limits for the standard

uncertainties of these sensitive values that are otherwise either

entirely unavailable or include severe limitations (see the

software manual for XD).
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2. Method

A Python script was developed that runs most of the required

steps automatically. As input, it needs an IAM model

including hydrogen-atom positions, the XD master files

(complete strategy), a parameter file and the data file. A

stepwise addition of parameters, following the suggestions

made in the XD manual, is highly recommended. Apart from

convergence issues, a smaller step (e.g. smaller groups of

parameters) supports the successful recognition of an over-

parameterization, along with the possibility of actually finding

parameters that are likely to contribute to the overfitting of

the data (see supporting information).

In this automatic process, the merged data set is first divided

randomly into k (normally 20) different training and valida-

tion sets.

(i) For each training set as well as for the total data set the

following steps are performed.

(a) In SHELXL (Sheldrick, 2008, 2015):

(1) Random shifts are applied to all coordinates and Uij

values;

(2) A high-order refinement of the heavy-atom positional

and anisotropic displacement parameters is performed to

reduce bias;

(3) A low-order refinement with fixed heavy atoms follows;

(4) The residual density peaks are automatically assigned to

hydrogen atom positions.

(b) In XD (Volkov et al., 2006) the full MM refinement

strategy is performed. In the first step the H-atom distances

are adjusted to the neutron diffraction values (Allen & Bruno,

2010).

(c) For every refinement step, a zero-cycle structure factor

calculation against the free sets (Rfree) is performed.

(ii) Rcross is calculated by combining all xd.fco files of all

validation sets for all steps.

(iii) Differences in hRworki and Rcross are calculated for the

individual steps and represented graphically.

(iv) In a second process, the distributions of all refined

parameters of the k refinements with mean values vmean and

standard deviation smean are compared with the values of the

refinement against all data, vtotal, and the estimated standard

uncertainty, stotal, calculated by XD. Individual refinement

steps are selected for this comparison.

(a) To check for normal distribution, the Shapiro–Wilk test

(Shapiro & Wilk, 1965) is performed for every parameter and

the W and p values are given. (In this test two values, W and p,

are calculated. W can be interpreted as a correlation coeffi-

cient, so has a value between 0 and 1. If the value is larger than

a defined Wcrit , the hypothesis of a normal distribution is

accepted. p describes the probability of this particular sample

distribution under the assumption of a normal distribution.)

(b) A complete list of all refined parameters is given, with

vmean , smean , vtotal , stotal , W and p.

(c) Several tables for the diagnostics of outliers are given:

(1) A list of all parameters vi with |vtotal � vi| > 3stotal;

(2) A list of all parameters from the Shapiro–Wilk tests with

a W value smaller than 0.905 or a p value smaller than 0.05,

which means that the hypothesis of a normal distribution is

refused with a significance level of 0.05;

(3) A list of all parameters with |vtotal � vmean|/stotal > 0.5;

(4) A list of all parameters with smean > stotal;

(5) A summary of the number of outlier parameters per test

set.

(d) For every parameter, a plot can be produced showing

the refinement against all data in grey and the distribution of

the k refinements in red (see Fig. 4).

(e) To visualize the variation in electron density of the k

refinements, an error cube is mapped on a density cube. A

colour-coded overlay (e.g. transparent to red) of such an error

cube on a density cube calculated from the full model will

highlight regions of higher uncertainties (see Fig. 6). [A

density cube is calculated for all k refinements and for the

complete model using the XDPROP module. The standard

deviation of every grid point is calculated considering all k

density cubes. A new cube containing only the deviation of

each respective grid point is written. This cube is plotted as a

colour-coded overlay (e.g. as a gradient from transparent to

red) on specified iso-surface levels (1.0, 1.5, 2.0, 2.5) of the

cube derived from the complete set of data. H atoms are

automatically excluded from the calculation of the density

cube because of their influence on the density combined with

their unreliably determined positions that would add only a

little information and clearly distract from the important

parts.]

(v) Additionally, a routine can be started that runs

XDPROP to search for bond critical points for all test sets at

individually selectable steps of the whole refinement strategy.

(a) Again, the distribution of the k refinements is compared

with the refinement against all data. From this distribution

lower limits for standard deviations can be estimated.

(b) The Shapiro–Wilk values W and p are calculated.

This procedure will now be explicitly described for bench-

mark structure 1. Subsequently, benchmark structure 2 will be

discussed much more briefly. Finally, some features of three

additional structures will be presented to illustrate how this

method can help to detect errors in the refinement strategy or

in the data. These features emphasize, among others, the need

for chemical constraints to limit pole populations of chemi-

cally equivalent atoms. The structures themselves and their

topological analyses are not within the scope of the current

paper and will be discussed elsewhere.

3. Experimental

3.1. Benchmark structure 1

Data for 1 (Schwendemann et al., 2011; Fig. 1) were

collected on a Bruker D8 three-circle goniometer equipped

with a Bruker TXS-30 Mo rotating anode with INCOATEC

Helios mirror optics and an APEXII detector at 100 K. The

compound crystallizes in space group P421c with one molecule

in the asymmetric unit.

The local coordinate systems were defined in such a way

that the highest possible symmetry could be applied. This led
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to cylindrical symmetry for the H and F atoms and mirror

symmetry for the ethyl and phenyl C atoms. For the para-C

atoms even mm2 symmetry was adopted (for details see the

supporting information). We constrained the pole population

of chemically equivalent atoms to be identical (chemical

constraints; for details see the supporting information). The

two main questions we posed were:

(i) Can the local symmetry constraints be released without

overfitting and would this add information to the model?

(ii) Can the chemical constraints be released without

overfitting and would this cause differences in the parameters

concerning the constrained atoms?

3.1.1. Calculation of Rcross . The Friedel pairs were not

merged because the structure crystallizes in a noncentro-

symmetric space group. For all validation and training sets, it

was ensured that both Friedel mates were in the same set.

h�Rworki and �Rcross were calculated for all data and for

reflections on either side of sin(�)/� = 0.5 Å�1 to get a feeling

for the influence of low- and high-order reflections. Fig. 2

shows the results.

The first step in XD is refining multipole populations. Both

hRworki and Rcross drop significantly. For both residual values,

the improvement is, as expected, larger from the low-order

reflections compared with the high-order ones, because the

valence density is mainly described by low-order reflections.

The refinement of the � parameters has only a marginal effect

on the R values but seems to improve the model slightly.

Adding the monopole populations shows the expected effect:

an improvement mainly from the low-order reflections. In

addition, the following adjustments of displacement and

positional parameters again do not indicate any overfitting.

Here, a clear difference between low- and high-order reflec-

tions is not expected. The adjustment of the H-atom positional

parameters in a low-order refinement followed by refinement

of all other parameters against all data is a major improvement

and is, as expected, mainly due to the low-order reflections.

The refinement of �0 shows only a marginal effect on the R

values.

The next two steps concern the local symmetry constraints.

First, the local symmetry of the F atoms is lowered from

cylindrical to mirror plane symmetry. The small effect on the R

values indicates neither a real model improvement nor clear

overfitting. Although the changes are subtle, it seems that the

high-order reflections unexpectedly contribute the most.

Refining without any symmetry constraints, however,

increases Rcross slightly, indicating overfitting of the data,

although the total data-to-parameter ratio of 27.0 still seems to

be at the safe side, while the ratio of low-order data to the sum

of monopole, multipole and � parameter is only 5.1. Over-

fitting is even more evident when the chemical constraints for

equivalent atoms are also abandoned. Even here, the data-to-

parameter ratio is still 16.7, while the ratio of low-order data to

the sum of monopole, multipole and � parameter is now only

2.5. Anyway, the residual density maps seem to be improved,

because some peaks close to F atoms vanish. Although

releasing constraints on the pole populations is overfitting,

nevertheless the residual density still needs improvement.

Hence, an anharmonic description of the thermal motion of

these atoms was tested as an alternative, because we observe

research papers

IUCrJ (2017). 4, 420–430 Lennard Krause et al. � Charge-density refinement strategies 423

Figure 1
The molecular structure of 1. Anisotropic displacement parameters are
depicted at the 50% probability level. H atoms have been omitted for
clarity.

Figure 2
�R values for the initial refinement strategy. Abbreviations: M indicates
monopoles, D dipoles, Q quadrupoles, O octupoles, H hexadecapoles, U
Uij, K � and KP �0. A detailed description of the strategy is given in the
supporting information.



the typical positive and negative shashlik-like density distri-

bution (Herbst-Irmer et al., 2013). Instead of releasing

constraints, a refinement with third-order Gram–Charlier

coefficients for four F atoms was performed in two steps (see

Fig. 3). First, the three fluorine atoms F33, F34 and F35 of one

C6F5 substituent and, in a second step, the para-F atom F24 of

the second phenyl ring were anharmonically refined. Neither

step shows any sign of overfitting and, as expected, the high-

order reflections contribute the most. In the paper by Herbst-

Irmer et al. (2013) we have already investigated preliminary

Rfree tests to validate the refinement of Gram–Charlier co-

efficients but came to the conclusion that the results were not

clear. Now, the k-fold cross-validation and the differences in

Rcross instead of hRfreei are much more decisive.

It is important to note that several criteria must be fulfilled

for a physically reasonable refinement of anharmonic motion

(Herbst-Irmer et al., 2013):

(i) The residual density after harmonic refinement shows a

positive and negative shashlik-like density distribution close to

the atomic positions that vanishes after anharmonic refine-

ment (see the supporting information).

(ii) For each anharmonically refined atom, at least one

Gram–Charlier coefficient is larger than three times its s.u.

(see the supporting information).

(iii) Kuhs’ rule (Kuhs, 1992) should be fulfilled (see the

supporting information), at least for light elements like carbon

and fluorine. [Kuhs introduced a rule for estimating the

minimum data resolution for meaningful refinement of

anharmonic thermal parameters (Gram–Charlier coefficients)

for each anisotropic atom: Qn = 2n1/2(2�)�1/2(2ln2)1/2
hu2
i
�1/2.]

(iv) The probability density function (pdf) should be

reasonable. Unfortunately, the graphical representations

presented by Herbst-Irmer et al. (2013) were obtained with a

version of the program MoleCoolQt (Hübschle & Dittrich,

2011) that had a bug, producing wrong representations of the

pdfs. Except for very strong anharmonic behaviour, normally

no deviation from the harmonic ellipsoids is visible. However,

the amount of negative density should be checked. For the two

atoms F33 and F35 it is very small (lowest pdf values �0.87

and �0.34, respectively, and total integrated negative prob-

ability 0.000%), while for atoms F34 and F24 the lowest pdf

values are �52.24 and �105.38, respectively, and the total

integrated negative probabilities are 0.026 and 0.046%,

respectively. These two atoms are chemically equivalent and

therefore their monopole and multipole populations were

constrained to be the same. Additionally, there is a high

correlation between the Gram–Charlier coefficient C222 of

atom F24 and the bond-directed dipole population of 90%,

indicating that this anharmonic refinement is not reasonable.

Therefore only atom F34 should be refined anharmonically,

while atom F24 stays harmonic. This improves the pdf for F34

considerably (lowest pdf value �1.06 and total integrated

negative probability 0.000%). Now the highest correlation of

60–70% for the Gram–Charlier coefficent is to the positional

parameters x, y and z, as described previously (Herbst-Irmer et

al., 2013).

This example emphasizes that a small drop in Rcross is a

necessary, but by no means a sufficient, condition for a

physically reasonable model. After the anharmonic refine-

ment of these three F atoms, we checked again the effect of

local symmetry lowering (see the supporting information). A

reduction of cylindrical to mirror plane symmetry for the F

atoms still does not indicate overfitting and has no significant

effect on hRworki, but there is a slightly greater effect from the

high-order reflection. As the influence on the residual density

is also marginal [a drop in egross (Meindl & Henn, 2008) from

39 to 38.8 e Å�3], we decided that the final refinement strategy

should maintain the above-mentioned local symmetry, should

keep all possible chemical constraints and should contain the

anharmonic refinement of the three F atoms.

3.1.2. Distribution of the refined parameters. To prevent

model bias due to omission of reflections, we checked the

distribution of parameters derived by the 20 different refine-

ments. Fig. 4 shows two examples, in part (a) a parameter with

all values within vtotal � stotal and in part (b) a parameter with

one outlier.

For only nine out of 618 parameters of the final refinement

did we find one to three such outliers. The entire set of 14

deviations do not belong to one particular training set (for

details see the supporting information). Therefore, model bias

due to omission of data can be excluded. Nine of the entire set

of 14 outliers are octupole or hexadecapole populations of

atoms C1 and C2. These atoms are refined without any local

symmetry or chemical constraints. Therefore, we increased the

adopted local symmetry in a new refinement strategy: we now

adopt m symmetry for atoms C1, N1 and B1, and mm2

symmetry for all phenyl C atoms. Additionally, we started

refining the multipole population only up to the octupole level

and added hexadecapole populations in a later step.

Fig. 5 shows the �R values for this stepwise refinement. The

hexadecapole populations are first refined for all atoms

besides C1, C2, B1 and N1, and then for all atoms. Then the

three F atoms are refined anharmonically. In the next two

steps no symmetry constraints are applied to atoms C1, B1 and

N1, and afterwards the phenyl atoms are relaxed from mm2 to

m symmetry. None of these steps seems to overfit. In the next

step, the local symmetry of the F atoms is changed from

cylindrical to mirror plane symmetry. Again, no clear overfit is

visible, but as before the high-order reflections seem to

contribute the most. Releasing the local symmetry and

chemical constraints in the last two steps clearly overfits.
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Figure 3
�R values checking the anharmonic refinement of several F atoms. C
denotes third-order Gram–Charlier coefficients.



Therefore, we decided to stop the strategy after step 17 with

the symmetry reduction of the phenyl atoms to m symmetry.

For this last non-overfitting step there are only two parameters

with |vtotal � vi| > 3stotal with a maximum value of 3.3stotal, and

only seven parameters with stotal < smean. The largest (smean �

stotal)/stotal is 0.34. From the parameters describing the valence

density (monopole and multipole populations and � values),

the hypothesis of a normal distribution is confirmed with a

significance of 0.05 for 235 of the 255 parameters.

The idea presented in the following is based on the

assumption that overfitted parameters are imprecisely deter-

mined and therefore lead to higher variations in the electron

density described by them. A density cube at a relevant

isosurface level will not be able to show that variation, as the

model parameters do not directly reflect this uncertainty. A

computational detour involving a set of density cubes calcu-

lated for all work sets allows calculation of the standard

deviation of each density grid point (see x2). A colour-coded

overlay (e.g. transparent to red) of such an error cube on a

density cube (calculated from the full model) is able to high-

light regions of higher uncertainties (Fig. 6). This error cube is

related to the �(�) cube, the calculation of which is imple-

mented in XD, although it shows additional features not

covered hitherto. As the H-atom positions are by far the least

precisely determined parameters, their density will probably

show severe features in the corresponding error cube.

Fig. 6 compares the variation in the electron density of the k

refinements in an error cube mapped on a density cube (see

x2) for the last reasonable step 17 (Fig. 6a), with step 20

(Fig. 6b) refining all possible multipoles. For step 17, the atoms

with the highest variations are those that are refined with no

local symmetry constraints and no chemical constraints.

Astonishingly, the refinement of atom B1 seems to be very

stable. In step 20 all atoms show relatively high variation.

3.1.3. Distribution of properties at bond critical points.
With this refinement strategy, the distribution of properties at

bond critical points can now be evaluated. The calculation of

errors on � and r2� in XD has some severe limitations, as

mentioned in the manual. For the ellipticity " no errors are

provided. Nevertheless, an estimation of these errors would be

research papers

IUCrJ (2017). 4, 420–430 Lennard Krause et al. � Charge-density refinement strategies 425

Figure 5
�R values for an improved refinement strategy. Abbreviations: H indicates hexadecapoles and C third-order Gram–Charlier coefficients.

Figure 4
Distributions of two example parameters v, e.g. P20 and P43+ of atom C1.
(a) A parameter with all values within vtotal � stotal. (b) A parameter with
one outlier. The distributions are plotted both as histogram bars and as
fitted Gaussian functions. The value derived from the refinement against
all data vtotal with the estimated standard uncertainty stotal is depicted in
grey, while the distribution of the value with vmean and standard deviation
smean of the refinements against the 20 different training sets is given
in red.



useful. The distribution of k refinements can be used and, as

previously described, the standard deviation derived from the

distribution can be considered as a lower limit. The true error

could be higher, because the k refinements are not indepen-

dent. Table 1 shows a list of the properties at the bond critical

points of the B—C and B—N bonds, comparing the final

refinement with the first refinement without any local

symmetry or chemical constraints.

The following conclusions can be drawn:

(i) For all properties, the differences between the value

derived from the refinement against all data and the mean

value of the 20 refinements is insignificant,

|vmean � vtotal|/stotal < 0.6.

(ii) For the density �, the estimated stan-

dard uncertainty for the refinement against all

data is slightly larger than the standard

deviation of the distribution of the 20 refine-

ments, smean/stotal < 1. The estimated standard

uncertainty is in the range 0.009–0.012 e Å�3,

or 1–1.5% of �. In an investigation using 13

different data sets of oxalic acid (Kamiński et

al., 2014), the distribution has a standard

deviation in the range 0.03–0.06 e Å�3 or 1.5–

3.0%.

(iii) For the Laplacian r2�, the estimated

standard uncertainty is much smaller than the

standard deviation of the distribution, smean/

stotal > 7.1. The standard deviations are

between 0.3 and 0.6 e Å�5 i.e. 5–32% of vtotal.

In the above-mentioned investigation

(Kamiński et al., 2014), the standard deviation

is between 1 and 7 e Å�5, i.e. 6–28%.

(iv) For the ellipticity ", the standard

deviation is between 0.009 and 0.02. In the

work by Kamiński et al. (2014) it is between

0.01 and 0.04.

(v) Comparing the two refinements, most properties are

very similar, but the Laplacian of the N—B bond changes from

�0.94 to 1.86 e Å�5 and the ellipticity " changes from 0.5 to

0.7. To investigate which refinement step is mainly responsible

for these differences, all properties were checked for several

steps. The most important point seems to be the use of

chemical constraints, agreeing with the greatest effect on Rcross

(for details see the supporting information).

3.1.4. Influence of the number of test sets on the model.
The influence of the number of training sets on the models was

also checked. We repeated the refinement using ten or 50
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Table 1
Properties (� in e Å�3 and r2� in e Å�5) at the bond critical points of the B—C and B—N
bonds, comparing the final refinement strategy (second row) with the initial strategy without
local symmetry or chemical constraints (first row).

Bond Property vtotal stotal vmean smean |vmean � vtotal|/smean smean/stotal

C1—B1 � 1.139 0.012 1.141 0.007 0.3 0.6
1.154 0.012 1.156 0.006 0.2 0.5

r
2� �5.86 0.06 �6.0 0.6 0.2 11.2

�7.16 0.06 �7.2 0.5 0.2 9.7
" 0.03 0.042 0.019 0.5

0.05 0.055 0.013 0.4
C21—B1 � 1.023 0.011 1.024 0.010 0.1 0.9

1.057 0.009 1.059 0.005 0.5 0.5
r

2� �3.01 0.05 �3.1 0.6 0.1 12.4
�5.68 0.04 �5.8 0.4 0.3 9.2

" 0.11 0.11 0.02 0.2
0.09 0.094 0.009 0.5

C31—B1 � 1.050 0.011 1.049 0.007 0.1 0.7
1.055 0.010 1.055 0.005 0.1 0.5

r
2� �7.47 0.05 �7.5 0.4 0.1 7.6

�6.20 0.04 �6.2 0.4 0.1 9.2
" 0.18 0.18 0.02 0.2

0.15 0.15 0.02 0.2
N1—B1 � 0.779 0.011 0.790 0.005 0.6 0.5

0.747 0.011 0.749 0.005 0.4 0.4
r

2� �0.94 0.04 �1.1 0.3 0.4 7.1
1.86 0.05 1.8 0.4 0.2 7.9

" 0.48 0.49 0.06 0.2
0.65 0.66 0.06 0.1

Figure 6
The variation in electron density for the k refinements, displayed as an error cube mapped on a density cube calculated for the complete model. Cubes
are shown for (a) the last reasonable step 17 and (b) the refinement without any constraints (step 20). Two isosurface levels are plotted, at 1 and 2 e Å�3,
and the standard deviation is capped at 0.015 e Å�3. Hydrogen density has been omitted.



training sets, respectively (10% and 2% of data left out,

respectively). The behaviour of Rcross is nearly identical for

ten, 20 or 50 training sets (see the supporting information) but,

as expected, for ten validation sets (more data left out) there

are a higher number of outliers with |vi � vtotal| < 3stotal, while

there are none for 50 validation sets. Accordingly, the standard

deviations of the distributions shrink from ten to 50 validation

sets. Here, we decided to use 20 sets, as this seems to be a

sensible compromise between model bias and reasonable

standard deviations.

3.1.5. Influence of Friedel mates on the model. We ensured

that Friedel pairs are either both in the training set or both in

the validation set because structure 1 crystallizes in a non-

centrosymmetric space group. To evaluate the impact of this

treatment we performed the same refinement, but this time

with randomly prepared training and validation sets without

any special care for the Friedel pairs (see Fig. 7). Now over-

fitting is not that easy to detect. If we now check the feasibility

of releasing the local symmetry or chemical constraints,

hRworki responds in the familiar way but Rcross remains nearly

unchanged. There is still an indication of overfitting if Rmean

decreases much more than Rcross, but the picture is much less

obscure with a proper treatment of the Friedel pairs. As they

are not independent, neither is the model independent of a

particular Friedel mate being present or not in the training set.

3.2. Benchmark structure 2

Data for structure 2 (Fig. 8) were collected on a Bruker D8

three-circle goniometer equipped with a Bruker TXS-30 Mo

rotating anode with INCOATEC Helios mirror optics and an

APEXII detector at 100 K. The compound crystallizes in

space group Pbca (Krause, 2017).

The local coordinate systems were defined so that the

highest possible symmetry could be applied. This led to

cylindrical symmetry for the H and S atoms, mirror symmetry

for the methine C atoms and threefold symmetry for the

methyl C atoms. For the anthracene C atoms mm2 symmetry

was adopted. The pole populations of chemically equivalent

atoms were constrained to be identical. The C-atom multipole

expansion was restricted to octupoles, while for S and P atoms

hexadecapoles were employed. The refinement strategy was

similar to that of 1 (see the supporting information) and

similar trends for the behaviour of Rcross are evident (see

Fig. 9). The refinement of the multipole populations improves

hRworki and Rcross significantly. Both values show an

improvement that is greater from the low-order data

compared with the high-order, which is in good agreement

with expectations. The subsequent introduction of monopoles
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Figure 7
�R values for training sets with no special treatment of Friedel pairs

Figure 8
The molecular structure of 2. Anisotropic displacement parameters are
depicted at the 50% probability level. Hydrogen atoms have been
omitted for clarity.

Figure 9
�R values for the initial refinement strategy for structure 2. Abbrevia-
tions: M indicates monopoles, D dipoles, Q quadrupoles, O octupoles, H
hexadecapoles, U Uij, K � and KP �0.



displays a similar picture. Next, adjustment of the displace-

ment parameters does not show any sign of overfitting and is

affected by both low- and high-order reflections. The addition

of positional parameters for non-hydrogen atoms does not

need adjustment to the same extent here, indicating better

starting parameters. With the density modelled, a new

adjustment of the H-atom positions in step 6 leads to a drop in

the low-resolution R value, which is again in good agreement

with expectations.

The refinement of the k parameters in step 8 stems pre-

dominantly from the low-resolution data. The introduction of

hexadecapoles to the C atoms also shows an improvement

from the low-order data. The same is found for the expansion

from mm2 to m (in the plane) symmetry for the anthracene C

atoms. However, on releasing the local symmetry constraints,

overfitting is indicated by a drop in hRworki and an increase in

Rcross, which is even more pronounced after the release of the

constraints for equivalent atoms in step 14. The total data-to-

parameter ratio is still 24.2, but the ratio of low-order data to

the monopole or multipole populations and the � parameter is

reduced to 3.1. Ultimately, we decided to stay with the more

restricted model obtained after step 12. Here, the ratio of low-

order data to the monopole or multipole populations and the �
parameter is still 13.0.

3.3. Constraints due to crystallographic symmetry

Atoms on special positions need constraints for the

refinement. While in IAM programs like SHELXL these

constraints are generated automatically, they need to be set

manually in XD.

Compound 3 (Fig. 10) crystallizes in space group Pnma with

half a molecule in the asymmetric unit (Jancik et al., 2017).

Atoms P1, Cl1, Cl2 and N2 are located on a crystallographic

mirror plane. Cylindrical symmetry was applied to the Cl

atoms, and mm2 symmetry for the P and N atoms. All atoms of

each element type were constrained to share the same

monopole and multipole populations. Additional parameters

were then added in a stepwise manner: multipole and mono-

pole populations, and adjustment of U, xyz, � and �0. No

refinement step indicated any overfitting (see the supporting

information). However, a typical residual density distribution,

indicating anharmonic motion, was present. Hence third-order

Gram–Charlier coefficients, first for the Cl atoms, then for the

P atoms and finally for the N atoms, were introduced. No

overfitting was visible and all performed tests for a reasonable

refinement of anharmonic motion were fulfilled (Jancik et al.,

2017). Then the local symmetry of the Cl atoms was released

from cylindrical to mirror plane symmetry (data-to-parameter

ratio 44.3, low-order to monopole or multipole and � para-

meter 8.7). Subsequently, in a similar fashion, the symmetry

was lowered for the N and P atoms from mm2 to m (data-to-

parameter ratio still 41.2, low-order to monopole or multipole

and � parameter 6.4). The release of all chemical constraints

for all atoms followed (data-to-parameter ratio 28.7, low-order

to monopole or multipole and � parameter 4.9). Finally, all

symmetry constraints for all atoms on general positions were

released (data-to-parameter ratio 24.7, low-order to monopole

or multipole and � parameter 3.7). While the release of the

local symmetry contraints for the N and P atoms has only a

small effect on the R values, the release of both chemical and

local symmetry constraints for all atoms on general positions

increases Rcross, clearly indicating overfitting.

In a first trial, the constraints for the Gram–Charlier co-

efficients for the atoms on special positions were mistakenly

left unset. The impact on �Rcross was imperceptible, but this

error could easily be identified by inspection of the distribu-

tion of values of the k refinements (see Fig. 11). Of course,

such an error also leads to convergence problems, but the

parameter distribution is able to identify the problematic

parameters quickly.
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Figure 10
The molecular structure of 3. Anisotropic displacement parameters are
depicted at the 50% probability level.

Figure 11
Distribution of the Gram-Charlier coefficient C112 of atom Cl1, which was
refined by mistake but should be constrained to 0 due to the
crystallographic mirror symmetry



3.4. Outlier detection

Structure 4 (Stute et al., 2012; Fig. 12) crystallizes in space

group P21/n with one molecule in the asymmetric unit.

In this structure, the check of the parameter distribution

identified all outliers with |vtotal � vi| > 3stotal (for details see

the supporting information) as belonging to only three test

sets. Two of these sets showed much higher Rfree values than

all other sets (see Fig. 13).

Careful inspection of these two validation sets showed that

in both there is one very strong low-order reflection with Fo <<

Fc found by inspection of the DRK plots (Zhurov et al., 2008;

Zavodnik et al., 1999) (see the supporting information). These

two reflections are overexposed. Strong low-order reflections

have a large effect on the multipole populations, so an in-

accurate determination of such reflections is highly problem-

atic. Since these reflections are omitted from these two

training sets, the derived parameter sets from these two

training sets are not outliers but proper values. An omission of

these two reflections lowers the completeness in this important

low-order range but improves the model indicated by a more

reasonable parameter distribution (see as an example

Fig. 14b).

3.5. Chemical constraints

In all our tested structures, we observed the release of

chemical constraints to result in serious overfitting. Recently,

we published the charge-density investigation of a silylone

(Niepötter et al., 2014). In this structure, an Si atom is co-

ordinated by two identical cAAC (cyclic alkyl amino carbene)

ligands. We found that the two Si—C bonds differ significantly

in both length and ellipticity. Therefore, we anticipated that

the release of chemical constraints is necessary for a proper

modelling of this structure (for details of the Rcross procedure
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Figure 12
The molecular structure of 4. Anisotropic displacement parameters are
depicted at the 50% probability level. Hydrogen atoms have been
omitted for clarity

Figure 13
Rfree values for all 20 validations sets, blue: using all data, grey: after
omission of the outlying reflections.

Figure 14
Distribution of the monopole population of atom F34, (a) using all data
and (b) after omitting two outlier reflections.



see the supporting information). However, unexpectedly, only

the release of the local symmetry constraints of the Si atom

proved necessary to describe the differences in the two Si—C

bonds. In contrast, the release of the chemical constraints of

the two complete carbene ligands showed severe signs of

overfitting, further emphasizing chemical constraints to be

important in stabilizing a multipole refinement, at least for

data sets to a resolution of 0.5–0.4 Å.

4. Conclusions

The presented method of cross-validation is a valid tool in

multipole refinement. Although the number of data in a high-

resolution data set is high enough to achieve a global data-to-

parameter ratio larger than 1:10 or even 1:20, even when all

possible multipole parameters up to the hexadecapole level

are refined, it has to be considered that not all reflections

contribute equally to all multipole parameters. The informa-

tion about the valence density is mainly gained from the

relatively few low-order reflections. Therefore, the simple

global data-to-parameter rule of thumb is not sufficient to

decide on the advisable number of parameters. In contrast

with the well established Rfree in macromolecular crystal-

lography (Brünger, 1992, 1997) or the new Rcomplete concept

(Luebben & Gruene, 2015), this method is not interested in

absolute Rcross values but in the progress of Rcross along the

refinement strategy. For a reasonable refinement, not only

must the normal R values decrease but also the Rcross value.

Investigating several structures with this approach, we noticed

the following general aspects:

(i) It helps to start with very high symmetry defined only by

next neighbours.

(ii) Lowering these symmetry constraints often does not

improve the model significantly. Normally it is sufficient to

release these constraints for only a few atoms. Any un-

expected large drop in Rcross is suspicious and helps to detect

mistakes in the definition of the local coordinate system or the

assumed local symmetry.

(iii) Release of all chemical constraints clearly causes

overfitting in all investigated structures.

(iv) Unfortunately, XD does not offer restraints. However,

using restraints instead of constraints could be a further

improvement of the model (Paul et al., 2011; Zarychta et al.,

2011). A protocol for oriented local atomic axes is explained in

detail by Domagała & Jelsch (2008).

Additional to validation of the refinement strategy, analysis

of the parameter distribution provides access to further causes

of defects. Overlooking the necessary constraints required by

crystallographic symmetry can easily be prevented. Inaccu-

rately determined strong low-order reflections that bias the

derived parameters can be easily identified.

The k different refinements also provide a distribution of

the topological properties, leading to a rough estimate for the

standard deviations of these parameters.
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