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For many protein families, the deluge of new sequence information together

with new statistical protocols now allow the accurate prediction of contacting

residues from sequence information alone. This offers the possibility of more

accurate ab initio (non-homology-based) structure prediction. Such models can

be used in structure solution by molecular replacement (MR) where the target

fold is novel or is only distantly related to known structures. Here, AMPLE, an

MR pipeline that assembles search-model ensembles from ab initio structure

predictions (‘decoys’), is employed to assess the value of contact-assisted ab

initio models to the crystallographer. It is demonstrated that evolutionary

covariance-derived residue–residue contact predictions improve the quality of

ab initio models and, consequently, the success rate of MR using search models

derived from them. For targets containing �-structure, decoy quality and MR

performance were further improved by the use of a �-strand contact-filtering

protocol. Such contact-guided decoys achieved 14 structure solutions from 21

attempted protein targets, compared with nine for simple Rosetta decoys.

Previously encountered limitations were superseded in two key respects. Firstly,

much larger targets of up to 221 residues in length were solved, which is far

larger than the previously benchmarked threshold of 120 residues. Secondly,

contact-guided decoys significantly improved success with �-sheet-rich proteins.

Overall, the improved performance of contact-guided decoys suggests that MR

is now applicable to a significantly wider range of protein targets than were

previously tractable, and points to a direct benefit to structural biology from the

recent remarkable advances in sequencing.

1. Introduction

Molecular replacement (MR) is the most common technique

for deriving the lost phase information of the unknown target

structure in X-ray crystallography. MR places a structurally

similar protein in the unit cell of the unknown target to best

reproduce the diffraction data. The correct placement of the

similar structure provides the basis for the initial phase

calculation of the target. The obtained phasing information

and the measured diffraction intensities allow the initial

calculation of the electron-density map (Blow & Rossmann,

1961). However, homologues of the target structure do not

always exist or may be too structurally distinct. On the other

hand, experimental alternatives to MR such as anomalous

dispersion (Matthews, 1966; Hendrickson et al., 1985; Wang,

1985) or isomorphous replacement (Green et al., 1954; Perutz,

1956; Blow & Rossmann, 1961) can be time-consuming or

difficult to implement in certain cases. These considerations
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have driven recent developments in computational crystallo-

graphy to derive and trial search models from unconventional

sources. Such sources include ideal secondary-structure

elements or structural motifs (Rodrı́guez et al., 2009), libraries

of tertiary structural cores derived from mining the Protein

Data Bank (PDB; Sammito et al., 2013) and ab initio protein

structure predictions (‘decoys’; Qian et al., 2007; Rigden et al.,

2008; Das & Baker, 2009; Bibby et al., 2012; Keegan et al., 2015;

Rämisch et al., 2015; Thomas et al., 2015). Clearly, the success

of approaches based on ab initio protein modelling will

depend sensitively on the quality of the structure predictions

available.

In recent years, a step change in the accuracy of residue–

residue contact predictions (Giraud et al., 1999; Miller &

Eisenberg, 2008; Weigt et al., 2009; Burger & van Nimwegen,

2010), based on sequence information alone, has enabled

striking advances to be made in structural bioinformatics,

including in ab initio modelling. Although evolutionary

covariance analysis for contact prediction is a research area

with a long history (Levitt & Warshel, 1975; Vendruscolo et al.,

1997), only recently has the prediction of such contacts

become sufficiently accurate to guide ab initio structure

prediction successfully (Supplementary Fig. S1; Marks et al.,

2011; Kosciolek & Jones, 2014; Michel et al., 2014; Adhikari et

al., 2015; Ovchinnikov et al., 2015). The basic rationale behind

the prediction of residue–residue contacts rests on the exis-

tence of strong evolutionary constraints, reflected in the

covariation of contacting residues, to maintain functionally

important conformations. Such evolutionary constraints can

be detected at a sequence level, but thousands of homologous

protein sequences are required to detect them. The great

challenge of separating direct and indirect residue–residue

contacts (direct, A–B and B–C; indirect, A–C) was recently

overcome through the use of cooperative (‘global’) statistical

probability models. These approaches not only treat contact

pairs independently, but analyse their dependence on each

other, thereby increasing the signal-to-noise ratio in the

predicted list of contacts or ‘contact map’ (Giraud et al., 1999;

Miller & Eisenberg, 2008; Weigt et al., 2009; Marks et al., 2011).

Therefore, contacts with the strongest signal, indicated by the

highest global statistical scores, are most likely to represent

the true residue interactions in a protein conformation (Marks

et al., 2012).

Since the successful separation of direct and indirect

contacts, various evolutionary covariance-analysis applica-

tions have been developed to increase the accuracy and speed

of contact predictions (Balakrishnan et al., 2011; Jeong & Kim,

2012; Jones et al., 2012; Ekeberg et al., 2013, 2014; Kamisetty et

al., 2013; Wang & Xu, 2013; Feinauer et al., 2014; Kaján et al.,

2014; Schneider & Brock, 2014; Seemayer et al., 2014; Skwark

et al., 2014). Broadly, these applications can be divided into

three categories depending on the cooperative statistical

model implemented to derive evolutionary covariance

amongst multiple homologous sequences. The first category

employs a pseudo-likelihood maximization model and can be

found in applications such as plmDCA (Ekeberg et al., 2013;

Kamisetty et al., 2013), GREMLIN (Kamisetty et al., 2013) or

CCMpred (Seemayer et al., 2014). The second and third

categories include sparse covariance matrix inversion models

such as PSICOV (Jones et al., 2012) or mean-field direct

coupling analysis models such as EVFold-mfDCA (Kaján et

al., 2014), respectively. Although these methods differ in

accuracy and speed, a recent study (Jones et al., 2015) revealed

a high similarity of around 90% in top-ranked contacts

amongst those three categories. To capture the full spectrum

of top-ranked contacts and produce the best possible contact

map, metapredictors such as PconsC2 (Skwark et al., 2013,

2014) or MetaPSICOV (Jones et al., 2015) combine individual

contact predictions across two or three of these categories.

Additionally, an ongoing aim of prediction tools is to achieve

successful detection of evolutionary covariance from homo-

logous sequence sets of reduced diversity and number. Any

decrease in the number of homologous sequences required

would make covariance analysis applicable to smaller protein

families.

One of the principal applications of predicted contact maps

is to predict structures for large protein families (Marks et al.,

2011; Kosciolek & Jones, 2014; Michel et al., 2014; Adhikari et

al., 2015; Ovchinnikov et al., 2015). Without contact informa-

tion, accurate homology-independent fold predictions for

globular proteins in Rosetta are limited to chain lengths of up

to �130 residues (Kinch et al., 2011; He et al., 2013; Tai et al.,

2014). Several covariance analysis tools, such as GREMLIN

(Ovchinnikov et al., 2015), PconsC2 (Michel et al., 2014;

Skwark et al., 2014), MetaPSICOV (Jones et al., 2015;

Kosciolek & Jones, 2015) and EVFold (Marks et al., 2011),

reported accurate fold predictions for much larger globular

proteins, illustrating how the use of contact predictions can

greatly expand the capabilities of ab initio folding protocols.

The availability of improved tertiary-structure predictions

from contact-assisted fragment-assembly ab initio modelling

naturally enhances the prospects for their use in MR. Broadly

speaking, two approaches have been reported. The first entails

highly CPU-intensive modelling to produce an overall fold

prediction that is sufficiently accurate to serve as a search

model in the same way as a crystal structure or homology

model would conventionally be deployed (Qian et al., 2007;

Das & Baker, 2009). Alternatively, more cheaply obtained,

coarse-grained models can be clustered into search-model

ensembles and, recognizing their limited accuracy, treated to

truncation to attempt to isolate sufficiently accurate core

regions (Rigden et al., 2008; Bibby et al., 2012). AMPLE (ab

initio modelling of proteins for molecular replacement; Bibby

et al., 2012) is a pipeline that implements the latter strategy

and is available in the CCP4 software suite (Winn et al., 2011).

AMPLE overcomes the absence of suitable crystal structures

or homology models through a cluster-and-truncate approach

that processes computationally cheap and minimally refined

Rosetta (Bibby et al., 2012) or QUARK (Keegan et al., 2015) ab

initio decoys into search models. In brief, 1000 ab initio decoys

are clustered based on their structural similarity, after which

the decoys in the largest resulting cluster (containing a

maximum of 200 decoys) are truncated at 20 different inter-

vals. Truncation is rationally guided by inter-decoy structural
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variance within the cluster (Qian et al., 2007; Bibby et al.,

2012). The truncated decoys are then subclustered under three

different C� r.m.s.d. radii (1, 2 and 3 Å), whereby a maximum

of 30 decoys within the cluster, those closest to the cluster

centroid, are selected and combined into an ensemble. Lastly,

each ensemble search model undergoes three different side-

chain treatments: polyalanine (all side chains are truncated at

their C� atom), reliable side chains (only side chains are kept

that are usually well modelled; Shapovalov & Dunbrack, 2007)

and all-atom (all side chains are kept). Up to 120 ensemble

search models can be obtained per target through this cluster-

and-truncate approach, but this number strongly depends on

the structural similarity of the initial decoys and the similarity

of the decoys after truncation. Each ensemble search model is

processed using MrBUMP (Keegan & Winn, 2008), which in

turn uses Phaser (McCoy et al., 2007) and/or MOLREP (Vagin

& Teplyakov, 1997, 2010) for MR, SHELXE (Sheldrick, 2010;

Thorn & Sheldrick, 2013) for main-chain tracing and ARP/

wARP (Cohen et al., 2008) or Buccaneer (Cowtan, 2006) for

automatic rebuilding of the SHELXE trace.

In an initial study of 295 small globular proteins with fewer

than 120 residues and resolution better than 2.2 Å, 43% of the

targets were solved successfully (Bibby et al., 2012). However,

the application of ab initio modelling to MR, and therefore the

success of AMPLE, is greatly limited by the size and fold class

of the protein target. These limitations arise at the initial stage

during decoy prediction, where successful fold predictions of

protein structures without homologues of known structure are

currently limited to a chain length of �130 residues (Kinch et

al., 2011; He et al., 2013; Tai et al., 2014). AMPLE has been

shown to succeed with protein targets greater than 150 amino

acids in size, but these cases were not comparable in the nature

of the target and/or the methodology employed: the successes

were achieved with either anisometric folds (e.g. coiled coils),

ensemble search models derived from distant structural

homologues or NMR structures (Bibby et al., 2013; Bruhn et

al., 2014; Hotta et al., 2014; Thomas et al., 2015). Thus, the

largest globular protein target previously solved with AMPLE

using ab initio models is 120 amino acids in length (Bibby et al.,

2012), although it was noted in that work that success rates

had not declined to zero at this size threshold. In addition to

the issue of protein size, the success rate of AMPLE strongly

depends on the fold architecture, as reflected in the widely

varying success rates of all-� (80%), mixed �–� (including �/�
and �+� folds; 37%) and all-� protein targets (2%) in the

original test set of 295 small globular proteins. In sum, both the

size and the fold of the target can limit ab initio folding

protocols and thus the success rate of AMPLE.

Ab initio modelling of proteins without exploiting infor-

mation from known folds is a longstanding challenge in the

field of computational structural biology and success currently

strongly depends on the chain length and fold architecture of

the target protein. Recent successful advances in the deriva-

tion of direct residue–residue contacts from large multiple

sequence alignments have greatly increased the accuracy of ab

initio structure predictions, especially for larger and all-�
protein targets, which are the greatest challenges for ab initio-

based MR approaches. Here, we set out to explore the impact

of the improved contact-guided decoys on the success rate of

MR. For this, we use our automated pipeline AMPLE, as

its cluster-and-truncate approach has proven to be highly

successful in the downstream processing of ab initio decoys for

MR (Bibby et al., 2012). We report that contact-guided decoys

allow the successful solution of targets that were previously

unsolvable using the AMPLE method. In addition, we report

that combining independently obtained contact maps further

improves decoy quality, which in turn extends the tractable

MR target range to �-rich proteins.

2. Methods

2.1. Data set

A test set of 21 globular protein targets was used

throughout. They were manually selected to include a range of

chain lengths, fold architectures, X-ray diffraction data reso-

lutions and divergent sequence counts in a multiple sequence

alignment. The test set covered the three fold classes

(�-helical, mixed �–� and �-sheet) and each target was

grouped based on its secondary-structure content as defined

by DSSP (Kabsch & Sander, 1983; Joosten et al., 2011;

Supplementary Table S1). The chain length of the sequences

ranged from 62 to 221 residues and each crystal structure

contained one molecule in the asymmetric unit. The resolu-

tions of the crystal structures ranged from 1.0 to 2.3 Å. The

FASTA sequences of each target, as provided in the PDB

entry (Rose et al., 2015), were modelled, rather than the

sequence that was visibly present in the crystallographic

model. A number of divergent (‘effective’) sequences (Neff)

available for a target of greater than 100 is considered to be

the minimum requirement for accurate covariance-based

contact predictions (Skwark et al., 2014). The formula Neff =P
½ð1=n1Þ þ ð1=n2Þ þ . . .þ ð1=niÞ� (Jones et al., 2015) defines

Neff as the sum of fractional weights of n sequences in i clusters

in a multiple sequence alignment (MSA). To calculate this

parameter for our targets, each target sequence formed the

basis of an MSA which was obtained from a database search

with HHblits v.2.0.15 (Remmert et al., 2012). Two sequence-

search iterations were performed with an E-value cutoff of

10�3 against the nonredundant UniProt20 database v.2013.03

(The UniProt Consortium, 2015). All sequences in each

resulting alignment were then clustered using CD-HIT v.4.6.3

(Li et al., 2001, 2002; Fu et al., 2012) at 62% sequence identity

(Jones et al., 2015) and Neff was calculated.

2.2. Evolutionary covariance analysis

One contact map was predicted for each of the 21 targets

using the fully automated metapredictor PconsC2 (Skwark et

al., 2014). In summary, MSAs were generated with Jackhmmer

(Johnson et al., 2010) against the UniRef100 database and with

HHblits v.2.0.15 (Remmert et al., 2012) against the non-

redundant UniProt20 database v.2013.03 (The UniProt

Consortium, 2015) at E-value cutoffs of 10�40, 10�10, 10�4 and

1. Each MSA was then analysed with PSICOV (Jones et al.,
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2012) and plmDCA (Ekeberg et al., 2013, 2014) to produce 16

individual sets of contact predictions. All 16 predictions,

combined with a secondary-structure prediction, solvent-

accessibility information and a sequence profile, were then

provided to a deep-learning algorithm (Skwark et al., 2014) to

identify protein-like contact patterns. The latter produced a

final contact map for each target sequence.

An additional contact map for �-structure-containing

targets was predicted using CCMpred (Seemayer et al., 2014)

and reduced to �-sheet contact pairs using the CCMpred-

specific filtering protocol bbcontacts (Andreani & Söding,

2015). Each MSA for CCMpred contact predictions was

obtained using HHblits v.2.0.15 (Remmert et al., 2012). This

entailed two sequence-search iterations with an E-value cutoff

of 10�3 against the nonredundant UniProt20 database

v.2013.03 (The UniProt Consortium, 2015) and filtering to

90% sequence identity using HHfilter v.2.0.15 (Remmert et al.,

2012) to reduce sequence redundancy in the MSA. Besides the

contact matrix as input, bbcontacts requires a secondary-

structure prediction and a factor describing the range of

predicted contacts in the MSA. The latter was shown to

depend on the sequence count in the MSA (N) and the target

chain length (L). Thus, the factor describing this MSA-specific

diversity was calculated using the equation � = (N/L)1/2

(Andreani & Söding, 2015). The secondary structure for each

sequence was predicted using the addss.pl (Remmert et al.,

2012) script distributed with HH-suite v.2.0.16 (Söding, 2005).

Hereafter, the term bbcontacts will be used to describe the full

process from the target sequence to the filtered �-strand

contact map. At no point do contact-prediction algorithms

use structural information from structurally characterized

proteins.

2.3. Conversion of contact maps to contact restraints

For all targets, the predicted contact maps from PconsC2

were converted to Rosetta (Rohl et al., 2004) restraints to

guide ab initio folding of the target sequences. The FADE

energy function was used to introduce a restraint in the folding

protocol of Rosetta. As described in PconsFold (Michel et al.,

2014), a restraint was satisfied during folding if the partici-

pating C� atoms (C� in the case of glycine) were within 9 Å of

one another. If a pre-defined contact restraint was satisfied,

a smoothed ‘squared-well’ bonus was added to the internal

energy scoring function of Rosetta during folding. The shape of

this function therefore rewards conformations that place

residues within 9 Å of each other, but has no influence on the

energy outside this range. Thus, a false-positive prediction

between two positions that are in fact distant in the target

structure will not lead to an undesirable long-distance

attraction between the two residues. As defined by Michel et

al. (2014), the ‘squared-well’ bonus (parameter wd in FADE)

was set to �15.00. Adopting the same benchmarked approach

as Michel et al. (2014), only the top L ranked contacts (based

on confidence scores, with L again representing target length)

from each PconsC2 contact map were selected and converted

to Rosetta restraints.

For �-containing targets, an alternative selection of

predicted contacts, hereafter called PconsC2+bbcontacts, was

made by a novel combination of PconsC2 and bbcontacts

predictions, as follows. Firstly, inter-strand predictions

composed of only one or two contacts were removed from the

bbcontacts contact list owing to their high false-positive rate

(Jessica Andreani, personal communication). For all present

contact pairs between residues i and j and any neighbouring

contacts (i.e. i, j � 1; i, j � 2; i � 1, j; i � 2, j) in the top-L

PconsC2 contact list the ‘squared-well’ bonus was doubled

from �15.00 to �30.00, which proved to be the most effective

after several options were tried (unpublished data). In addi-

tion, all contact pairs solely present in the filtered bbcontacts

contact map were added to the modified PconsC2 and

bbcontacts contact list with a ‘squared-well’ bonus of �15.00.

It is worth noting that the added bbcontacts contacts were also

present in the full PconsC2 contact map, although they were

not within the top-L cutoff. This approach allowed a

strengthening of the weight on �-strand contacts during ab

initio structure prediction. After uniting the two predictions in

this way no further length-based cutoff was applied, so that

the PconsC2+bbcontacts restraint list fed to Rosetta for

�-containing proteins might be longer than the simple

PconsC2 list.

The final contact-prediction lists were compared with the

corresponding crystal structure contacts to determine their

accuracy. For this, all pairs of C� atoms (C� in the case of

glycine) within 9 Å of one another in the crystal structure were

considered as reference contacts. Predictions were assigned as

true or false positives according to whether they were in the

list of reference contacts or not. The precision or positive

predictive value (PPV) for the each restraint list was then

determined using the formula PPV = (true positives)/(true

positives + false positives).

2.4. Ab initio structure prediction of decoys

Fragments were picked for unassisted Rosetta modelling

with secondary-structure prediction from PSIPRED

(McGuffin et al., 2000) and for contact-assisted decoys with the

secondary-structure prediction obtained during evolutionary

covariance analysis. Homologous structures were excluded

using the nohoms flag to make all experiments equivalent to

predictions of unknown folds. Protein decoys were generated

using the AbinitioRelax folding protocol of Rosetta in

v.2015wk05 (Rohl et al., 2004). As recommended in the Rosetta

documentation, special modelling parameters included the

helix and loop atom-refinement flags abinitio::

rsd_wt_helix and abinitio::rsd_wt_loop with a reweight

factor of 0.5. The two flags abinitio:relax and relax::fast

were set during ab initio modelling to obtain an all-atom

refinement using the Rosetta full-atom force field. For each

target in the data set, the structure folds were predicted under

two different restraint conditions: without any residue–residue

contact restraints and with PconsC2-only contact restraints.

Targets containing �-folds were additionally modelled with a

third restraint condition: PconsC2+bbcontacts contact
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restraints derived as described above. bbcontacts-only contact

restraints were not treated as a separate condition owing to

the low count of predicted contacts. A total of 1000 decoys

were modelled for each target under each of the three

different restraint conditions. Decoy quality was assessed

based on the template-modelling score (TM-score; Zhang &

Skolnick, 2005), a measure of fold similarity between two

structures with identical sequences, in this case a decoy and

the corresponding crystal structure. TM-scores range from 0 to

1, with a TM-score above 0.5 usually indicating a correct fold

prediction.

2.5. Molecular replacement

The three sets of ab initio decoys for each target were

subjected to SCWRL4 side-chain remodelling (Canutescu et

al., 2003; Krivov et al., 2009). Afterwards, all three sets of

decoys for each target were run in the automated MR pipeline

AMPLE v.1.0 using default parameters, with the exception of

the number of clusters to trial, which was changed from one to

three (Bibby et al., 2012). The associated structure-factor

amplitudes for the crystal structure of each target were

retrieved from the PDB. The correct placement of search

models by Phaser was assessed using the recently developed

residue-independent overlap (RIO) score (Thomas et al.,

2015). In short, the RIO score assesses the in-sequence and

out-of-sequence register overlap of the placed search-model

residues (fragments of at least three residues) with the

corresponding crystal structure. To be considered a success,

MR using AMPLE was required to give a SHELXE corre-

lation coefficient (CC) of �25.00 and an average chain length

(ACL) of �10.00 (Sheldrick, 2010; Thorn & Sheldrick, 2013;

Keegan et al., 2015). Additionally, structure rebuilding of the

SHELXE chain traces was attempted using both ARP/wARP

(Cohen et al., 2008) and Buccaneer (Cowtan, 2006) and an

Rfree value of �0.45 from either method was required.

3. Results

3.1. Both general and b-strand-specific residue–residue
contact maps improve ab initio protein structure predictions

The initial part of this study evaluates the use of contact

restraints for improving ab initio protein structure prediction.

For each protein target in the data set, 1000 decoys were

predicted using Rosetta, either unassisted or with restraints

deriving from PconsC2 alone or from our novel fusion of

PconsC2 and bbcontacts predictions. Since AMPLE by default

processes decoys from the largest cluster to create search

models, structure quality was primarily assessed for these

structure predictions alone. However, we also report overall

improvements for all decoys (Table 1).
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Table 1
Restraint-guided ab initio modelling improves model quality.

Median template-modelling scores for ab initio decoys found in the largest
cluster (values for all decoys are shown in parentheses) predicted for threefold
classes using three different types of residue–residue constraint settings.

Fold classification Rosetta PconsC2-only PconsC2+bbcontacts

All-� 0.377 (0.298) 0.609 (0.531) —
Mixed �–� 0.314 (0.252) 0.537 (0.433) 0.565 (0.441)
All-� 0.323 (0.247) 0.467 (0.374) 0.471 (0.381)
Mixed �–� + all-� 0.320 (0.249) 0.506 (0.397) 0.522 (0.403)

Figure 1
Residue–residue contact restraints improve ab initio model quality. (a) Median template-modelling scores (TM-scores) for Rosetta decoys plotted against
median TM-scores for PconsC2-only coupling-guided decoys. (b) Median TM-score for PconsC2-only coupling-guided decoys plotted against median
TM-scores for PconsC2+bbcontacts decoys (Skwark et al., 2014; Andreani & Söding, 2015). Median TM-scores derived from decoys found in the largest
cluster. The symbol shapes correspond to the three different fold classes: all-� (circles), all-� (triangles) and mixed �–� (squares).



A high degree of sequence diversity is a prerequisite for the

identification of residue covariance in MSAs. The range of

effective sequences in the MSAs of target sequences ranged

from 272 to 1831. Typically, higher numbers of effective

sequences correlate with more accurate contact predictions

(Jones et al., 2012; Kamisetty et al., 2013; Ekeberg et al., 2014;

Skwark et al., 2014; Ma et al., 2015). Here, similar results were

observed, as illustrated in Supplementary Fig. S2. Considering

the three fold classes, more accurate predictions were

obtained for �-structure-containing proteins (median PPV� =

0.940; median PPV�–� = 0.909) compared with all-� targets

(median PPV� = 0.655). In plain language, for �-structure-

containing proteins over 90% of the intramolecular contacts

predicted by evolutionary covariance methods are indeed

present in the crystal structure. Although untested in this

study, a higher accuracy for �-sheet-

containing proteins is achieved owing to

the regular pattern of contact pairs that

is easily detectable in a contact map

(Skwark et al., 2014; Andreani &

Söding, 2015). The deep-learning

procedure used during the final step of

PconsC2 filters these contact pairs

better, therefore increasing the overall

accuracy of the prediction.

As expected (Michel et al., 2014;

Skwark et al., 2014), the inclusion of

PconsC2-predicted contact information

substantially improved the quality of

structure predictions. A simple Rosetta

run without contact information yielded

a largest cluster median TM-score of

0.342 for all 21 protein targets,

compared with 0.542 for PconsC2-only decoys (Fig. 1a). 20 of

21 targets were modelled better, with median TM-score

improvements ranging from 0.035 to 0.429. A single target,

PDB entry 2qyj, the unassisted Rosetta models for which were

already of exceptionally high quality (median TM-score of

largest cluster structure predictions of 0.865), was modelled

slightly worse (0.780) when contact information was included.

For 13 �-strand-containing proteins in the data set we

developed a novel approach of combining the top-L predicted

PconsC2 (Skwark et al., 2014) contacts with the filtered

�-sheet-specific bbcontacts (Andreani & Söding, 2015)

contacts. This procedure resulted in the upweighting of some

contacts already present in the PconsC2 list and the addition

of others. The number of contacts affected in each category is

shown in Fig. 2. At least 80% of upweighted contact restraints
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Figure 2
Effects of upweighting and addition of �-sheet-specific contacts on contact accuracy and decoy quality. Number of (a) upweighted and (b) added
bbcontacts �-sheet-specific contact restraints for 13 �-sheet-containing (seven all-�, triangles; six mixed �–�, squares) targets plotted against their
corresponding positive predictive value (PPV). The colour fill of each point corresponds to the resulting difference in median TM-scores between the
largest cluster decoys from PconsC2-only and PconsC2+bbcontacts decoy sets (positive values favour the latter).

Table 2
Summary of ab initio structure-prediction results of �-structure-containing targets.

All data shown are for PconsC2+bbcontacts (PconsC2-only) guided decoys.

TM-score

Fold
classification

PDB
code

No. of effective
sequences

No. of
contacts PPV

Top-cluster
decoys 1000 decoys

Mixed �–� 1aba 1037 92 (87) 0.787 (0.782) 0.584 (0.546) 0.507 (0.496)
1chd 852 222 (203) 0.924 (0.931) 0.626 (0.634) 0.501 (0.528)
1e0s 1831 184 (174) 0.691 (0.713) 0.520 (0.495) 0.362 (0.353)
1eaz 1060 136 (125) 0.928 (0.944) 0.581 (0.547) 0.512 (0.460)
1lo7 1026 146 (141) 0.980 (0.986) 0.535 (0.528) 0.453 (0.443)
1tjx 1189 178 (159) 0.857 (0.887) 0.425 (0.427) 0.354 (0.358)

All-� 1bdo 940 91 (80) 0.913 (0.963) 0.477 (0.490) 0.379 (0.402)
1kjl 272 183 (146) 0.704 (0.727) 0.385 (0.367) 0.313 (0.293)
1npu 943 136 (117) 0.835 (0.940) 0.389 (0.438) 0.322 (0.331)
1pnc 887 111 (99) 0.830 (0.889) 0.478 (0.470) 0.375 (0.354)
2nuz 1048 70 (62) 0.901 (0.952) 0.650 (0.622) 0.540 (0.498)
3w56 949 146 (131) 0.896 (0.906) 0.444 (0.440) 0.363 (0.353)
4u3h 1226 109 (100) 0.911 (0.950) 0.563 (0.461) 0.440 (0.446)



(present in the final contact lists of PconsC2 and bbcontacts

predictions) proved to be true positives (Fig. 2a). The average

PPV of upweighted contacts was 95% (Fig. 2a). The quality of

the added contacts was generally lower (Fig. 2b), but nine of

the 13 targets had a PPV of at least 50% (Fig. 2b). Thus, at the

cost of the inclusion of some false-positive contacts, our

approach generally provides extra valuable information for

the folding process.

Models based on PconsC2+bbcontacts contacts were again

somewhat improved compared with those built using the

PconsC2 contacts: the median TM-scores for the two model

sets were 0.522 and 0.506, respectively (Fig. 1b). Model quality

improved for nine targets, of which five showed improvements

in median TM-score of at least 0.02 (Table 2). Model quality

deteriorated for four targets, but for three of these the

difference was very small: less than 0.02 (Table 2).

3.2. Contact-guided ab initio models extend the tractable
target range of AMPLE

With a demonstrable and significant improvement in decoy

quality evident from the use of predicted contact restraints,

the ability of AMPLE to solve the 21 protein targets using

contact-guided decoys was then tested. For all targets, two sets

of decoys were trialled deriving from ab initio structure

prediction with no contact-prediction restraints or with

PconsC2-only restraints. For �-strand-containing targets a

third decoy set was created using PconsC2+bbcontacts-

derived restraints. Structure

solution of each target was

attempted with these sets of

structure predictions using

default AMPLE methods.

Successful MR was detected as

previously by the ability of

SHELXE main-chain tracing and

density modification run on the

MR placement to reach a corre-

lation coefficient (CC) of �25

with a mean traced chain length

of �10 residues (Sheldrick, 2010;

Bibby et al., 2012; Thorn & Shel-

drick, 2013; Keegan et al., 2015;

Thomas et al., 2015). As

previously (Keegan et al., 2015;

Thomas et al., 2015), we further

required that an Rfree value of

�0.45 could be achieved after

ARP/wARP (Cohen et al., 2008)

or Buccaneer (Cowtan, 2006)

automatic rebuilding of the

resulting SHELXE chain traces.

Based on these stringent

success criteria, the default algo-

rithm of AMPLE achieved eight

structure solutions for decoys

predicted without contact

restraints (Fig. 3, blue). Six out of

eight all-�, one mixed �–� and

one all-� target were solved with

chain lengths up to 213 residues.

Success using ab initio models has

not been previously reported for

such large globular protein

targets (Table 3), but these find-

ings recapitulate the fold-class

preferences observed previously:

AMPLE works well for all-�
targets but less so for mixed �–�
and particularly all-� proteins

(Bibby et al., 2012). Previously,
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Figure 3
Contact restraint-guided ab initio models extend the tractable target range of AMPLE. Molecular-
replacement (MR) success mapped against target chain length and median template-modelling score (TM-
score). The point shape corresponds to the fold class of the target: all-� (circles), all-� (triangles) and mixed
�–� (squares). The point colour indicates successful structure solutions for the contact constraints used:
none (blue), PconsC2-only (red) and PconsC2+bbcontacts (gold). Points for successful solutions were
considered in the order of Rosetta, PconsC2-only and PconsC2+bbcontacts decoys. In cases of unsuccessful
molecular-replacement attempts (empty symbols), TM-scores for the largest clusters of PconsC2+bbcon-
bbcontacts decoys are shown. Median TM-scores for each point correspond to the largest decoy cluster
(compared with the crystal structure), leading to a structure solution (cluster indices given next to each
point for targets that were not solved with the largest cluster). The dashed grey line highlights the tested
target chain-length limit of AMPLE (120 residues) for globular proteins (Bibby et al., 2012). Cartoon
representations of crystal structures of five different targets exemplify the diversity of structure solutions
(PDB identifiers are provided next to each crystal structure). �-Helices are shown in red, �-sheets in yellow
and loops in green.



the strong performance on all-� targets has been at least partly

attributed to the greater accuracy of Rosetta modelling of

those proteins (Bibby et al., 2012), but these results make a

second important contribution more explicit. Most all-�
targets were solved despite the overall accuracy of their

models being poor (Fig. 3). This suggests that their success in

MR, nevertheless, lies with the superior ability of SHELXE to

autotrace helices compared with other secondary structures

(Sheldrick, 2010). The �-containing targets solved here were

the mixed �/�-fold bacteriophage T4

glutaredoxin (PDB entry 1aba) and the

all-� biotinyl domain of acetyl-

coenzyme A carboxylase (PDB entry

1bdo), both with chain lengths of less

than 90 residues (Table 3).

When predicted contact information

from PconsC2 was used in the model-

ling, the resultant structure predictions

from the largest cluster solved an addi-

tional two all-� structure solutions: the

�-spectrin SH3 domain (PDB entry

2nuz) and the FN3con domain (PDB

entry 4u3h) (Fig. 3, red). Although these

targets do not exceed the previously

benchmarked chain-size limit of 120

residues (Bibby et al., 2012), it is worth

noting that three out of the five all-�-

containing proteins with chain lengths

of less than 120 residues were solved.

This strongly indicates that the

previously low success rate of AMPLE

of �2% for all-� targets in this size

range (Bibby et al., 2012) is improved

by using contact information.

PconsC2+bbcontacts decoys achieved all of the structure

solutions using PconsC2-only decoys. Additionally and most

notably, PconsC2+bbcontacts decoys led to the structure

solution of the mixed �+� PH domain of the human TAPP1

protein (PDB entry 1eaz; Fig. 3, gold). The structure solution

of 1eaz uniquely using PconsC2+bbcontacts restraints high-

lights the importance of the fusion of contact maps developed

here. In total, the largest cluster decoys modelled with

PconsC2 and bbcontacts restraints solved 11 out of 21 targets.
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Figure 4
Contact restraints improve the search-model quality of �-strand-containing targets. Structural superposition of the (a) Rosetta (C� r.m.s.d. 2.814 Å;
ensemble contains two structures), (b) PconsC2-only (C� r.m.s.d. 1.748 Å; 30 members) and (c) PconsC2+bbcontacts (C� r.m.s.d. 1.760 Å; 15 members)
search-model ensembles for 4-hydroxybenzoyl CoA thioesterase (PDB entry 1lo7). Examples are the highest scoring search models based on SHELXE
CC score, with only (b) and (c) leading to successful structure solutions. Search models are shown as tubes and crystal structures as cartoons. (a) and (c)
are 50% of the target sequence, while (b) is 55%. The colour scale illustrates the pairwise C� r.m.s.d. between each search-model ensemble (represented
by its first member) and the crystal structure, with blue representing the minimum C� r.m.s.d. and red the maximum. Unaligned residues are coloured
grey.

Table 3
Summary of molecular-replacement solutions of 21 protein targets.

The total number of ensemble search models derived from ab initio decoys from the three largest clusters
is provided in parentheses after the individual number of successful search models.

No. of successful (total) search models

Fold
classification

PDB
code

Resolution
(Å)

Target chain
length Rosetta PconsC2-only PconsC2+bbcontacts

All-� 1kw4 1.75 89 137 (393) 101 (468) —
1bkr 1.10 109 21 (105) 13 (459) —
4cl9 1.40 127 1 (210) 1 (408) —
1a6m 1.00 151 1 (102) 4 (327) —
2qyj 2.05 166 378 (501) 329 (453) —
4w97 1.60 200 6 (114) 3 (399) —
1hh8 1.80 213 3 (66) 0 (297) —
1tlv 1.95 221 0 (18) 2 (399) —

Mixed �–� 1aba 1.45 87 4 (312) 58 (429) 93 (411)
1eaz 1.40 125 0 (135) 0 (345) 28 (327)
1lo7 1.50 141 0 (120) 3 (327) 3 (333)
1tjx 1.04 159 0 (27) 0 (165) 0 (150)
1e0s 2.28 174 0 (15) 0 (195) 0 (207)
1chd 1.75 203 0 (12) 0 (279) 0 (225)

All-� 2nuz 1.85 62 0 (393) 76 (444) 183 (453)
1bdo 1.80 80 27 (343) 16 (381) 19 (372)
1pnc 1.60 99 0 (126) 0 (300) 0 (297)
4u3h 1.98 100 0 (273) 14 (357) 1 (372)
1npu 2.00 117 0 (111) 0 (210) 0 (180)
3w56 1.60 131 0 (129) 0 (123) 0 (150)
1kjl 1.40 146 0 (63) 0 (174) 0 (201)



By default, the AMPLE algorithm processes ab initio

models solely from the largest cluster. When trialling

ensemble search models based on decoys from the three

largest clusters, an additional three structure solutions were

obtained (Fig. 3). The successful solution of haem-bound

oxymyoglobin (PDB entry 1a6m) was achieved with Rosetta

decoys from the third cluster. Notably, ab initio modelling of

this target was performed without its large bound haem group,

yet structure solution was achieved. The second target, the

inactive LicT PRD domain from Bacillus subtilis (PDB entry

1tlv), was solved with PconsC2-only decoys from the third

cluster. This all-� target with a chain length of 221 residues is,

to our knowledge, the largest globular protein to be solved

using search models derived from ab initio protein structure

modelling. As mentioned above, all-� targets such as this

benefit from the powerful helix tracing in SHELXE (Shel-

drick, 2010), as do the programs of the ARCIMBOLDO suite

(Rodrı́guez et al., 2009), which can also solve large all-�
protein structures (Fourati et al., 2014). Lastly, PconsC2-only

and PconsC2+bbcontacts decoys derived from second largest

clusters yielded search models that solved the 4-hydroxy-

benzoyl CoA thioesterase domain structure (PDB entry 1lo7).

Particularly notable about this solution is the topology of the

search models. Although this mixed �+� target contains a

number of helices, the best structure solutions (based on

SHELXE CC scores) were obtained from search models

containing the accurately modelled, central, four-stranded

�-sheet (Fig. 4). This accurate modelling, which is required for

successful MR, was only achieved with the guidance of contact

restraints. In total, the addition of these three structure

solutions results in 14 out of 21 structure solutions for

PconsC2+bbcontacts decoys compared with nine for simple

Rosetta decoys.

Although the stringent criteria of MR success used here did

not indicate a successful structure solution for target 1e0s,

the beneficial effect of including joint PconsC2+bbcontacts

contact predictions was evident in the search-model place-

ment as assessed by RIO scores (Fig. 5). For the top PconsC2-

only search model, 40% (12 residues) of the search-model

residues were correctly superimposed, albeit out of register

(blue) on the target structure (Phaser TFZ = 4.7, Phaser LLG

= 16). For the top PconsC2+bbcontacts search model, 77% (30

residues) of the search model were superimposed in an in-

register fashion (Phaser TFZ = 5.3, Phaser LLG = 17) (Fig. 5).

For the latter, expert manual intervention might allow struc-

ture determination, but in this case the correct solution was

not prominent in the list of MR placements. Nevertheless, it is

clear that even when overall structure solution was not auto-

matically achieved the PconsC2+bbcontacts model provided

better results which might be recoverable as successes in the

future as MR and post-MR software improves still further.

Within the range explored, the success of structure solution

did not appear to depend significantly on the resolution of

the available crystallographic data (Supplementary Fig. S3).

Successful targets ranged in resolution from 1.00 to 2.05 Å

(mean � standard deviation of 1.62 � 0.32 Å), while unsuc-

cessful targets spanned 1.04–2.28 Å (1.67 � 0.40 Å). The

solvent content of the protein crystals appeared to have a

modest impact on MR success. Targets with successful struc-

ture solutions ranged from 36.0 to 55.3% (mean � SD of 46.1

� 5.2%) solvent content compared with 25.8–48.0% (39.1 �

8.1%) for unsuccessful targets.

Given that the inclusion of predicted contact information is

a significant change to the modelling protocol, we re-examined

the performance and importance of the key features of the

operation of AMPLE. A detailed analysis of the character-

istics of the successful search

models is provided in the

Supporting Information; only a

summary is provided here.

AMPLE uses well established

clustering of decoys (Simons et

al., 1997) to pick out those likely

to be the most accurate. This

continues to be effective here, as

picking the largest clusters selects

better than average decoys from

the sets available (Supplementary

Fig. S4) and there is a good

correlation between the largest

cluster size and the median

TM-score of the decoys in that

cluster (Supplementary Fig. S5).

However, the size of the largest

cluster does not correlate well

with the total number of

successful search models (Supple-

mentary Fig. S6). AMPLE also

relies on rational, variance-based

truncation to trim ensembles
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Figure 5
PconsC2+bbcontacts contact-derived models give a more accurate MR placement for PDB entry 1e0s
which, although not solved automatically, might yield to expert manual intervention. Top Phaser solutions
of 1e0s based on RIO scores for (a) PconsC2-only (RIO score 12) and (b) PconsC2+bbcontacts (RIO score
30) search models for target 1e0s. Search-model colour coding indicates useful superposition of residues by
in-sequence (green) or out-of-sequence register (blue) residues as well as misplaced (red) residues. The
addition of bbcontacts restraints produced a more accurate model with correctly placed �-strands that was
placed correctly. Both structures are shown in cartoon representation with the crystal structure shown as a
transparent cartoon. Unaligned reference crystal structure residues are coloured grey.



down to more accurate core structures, with the size range 15–

40 residues found to be most successful (Bibby et al., 2012).

Here, the truncation is further validated (Fig. 6) and a similar

mapping of success onto search-model size is observed

(Supplementary Fig. S7). Fig. 6 further illustrates the overall

positive impact of contacts on accuracy: note the larger

number of low-r.m.s.d. ensembles on the right of Fig. 6(b)

compared with Fig. 6(a). However, Fig. 6 also illustrates that

targets that are already well modelled by simple Rosetta and

successful in MR (blue points on the right in Fig. 6a) can be

modelled slightly worse when contact information is included

(somewhat raised r.m.s.d.s in Fig. 6b), presumably owing to the

influence of false-positive contact predictions. Previously, we

have found that sampling across three subclustering radii and

three modes of side-chain treatment were both required for

solution of the largest possible number of targets (Bibby et al.,

2012). This remains largely the case in the current exercise, as

unique solutions were obtained for each of the subclustering

radii (Supplementary Table S1). Polyalanine side-chain search

models were the most successful, but a single target, PDB

entry 1eaz, was only solved using one of the alternative

treatments (Supplementary Table S1).

4. Discussion

The recently emerged ability to predict contacting residues

from large protein sequence alignments is one of the most

exciting developments in structural bioinformatics for many

years. The key statistical breakthrough allowing the disen-

tangling of predicted direct contacts (Giraud et al., 1999;

Miller & Eisenberg, 2008; Weigt et al., 2009; Marks et al., 2011),

i.e. neighbouring amino acids from pairs of residues whose

identities covary indirectly, has been followed by a wave of

papers not only dealing with the accuracy of predictions but

also considering the manifold

applications of the information.

Predicted contact information is

of immediate benefit to crystallo-

graphers in many ways that are

yet to be fully appreciated,

including parsing of domains for

structural analysis (Rigden, 2002;

Sadowski, 2013) and interpreta-

tion of crystal structure composi-

tion (Nicoludis et al., 2015). Here,

we considered how the better

protein ab initio models that can

be produced by exploiting infor-

mation can serve as a source of

improved search models for MR.

We use the MR pipeline AMPLE

as a convenient and effective tool

for the analysis.

Challenged by the lesser

success of AMPLE with

�-structure-containing proteins

(Bibby et al., 2012), and moti-

vated by the accuracy improve-

ments in ab initio fold predictions

through contact restraints (Marks

et al., 2011; Michel et al., 2014;

Jones et al., 2015; Ovchinnikov

et al., 2015), we developed a

new approach for combining

predicted contact-restraint lists

from PconsC2 (Skwark et al.,

2014) and bbcontacts (Andreani

& Söding, 2015) to elevate the ab

initio modelling accuracy of

�-structure protein targets.

Structure predictions guided by

the resulting PconsC2+bbcontacts

contact restraints improved the

decoy quality for nine out of 13
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Figure 6
Variance-based truncation remains an effective way to derive successful search models from higher quality
contact restraint-assisted ab initio decoys. The percentage of sequence in the search model is mapped
against the root-mean-square deviation (r.m.s.d.) over all C� atoms of the first representative of each
search-model ensemble derived from the largest cluster against the native structure. Successful structure
solutions of individual search models are highlighted in blue and unsuccessful solutions in red.
Progressively darker shades of either colour correspond to increasing numbers of overlapping points.
Progressive truncation is shown for (a) Rosetta decoys and (b) PconsC2+bbcontacts decoys (or PconsC2-
only decoys for all-� targets).



�-structure-containing protein targets. Our approach, which

involved both selective upweighting of and addition to the

PconsC2 set, based on the specialist �-sheet predictions, may

well be of more general use to the protein-modelling

community. The value of these contact-guided ab initio models

for structure solution by MR of targets treated as novel folds is

demonstrated. Nine of the 21 targets in the data set were

solved using the AMPLE algorithm to process unassisted

Rosetta structure predictions. This number rose to 14 using

contact-guided modelling. The 100% success rate for all-�
targets is highly encouraging and, along with the comparable

MR pipeline ARCIMBOLDO (Rodrı́guez et al., 2009),

graphically illustrates the power of the �-helical tracing

implemented in SHELXE (Sheldrick, 2010) and the relative

tractability of �-rich targets to unconventional MR. More

�-rich, �-poor targets are harder for both AMPLE and

ARCIMBOLDO, so our demonstrable advances with these

targets, leveraging the value of contact restraints during ab

initio modelling, are exciting. The fusion of top-ranked

PconsC2 and bbcontacts contacts developed as part of this

study proved to be a key part in one successful structure

solution, further highlighting the importance of the approach.

The size of the targets solved is another notable feature of

this work. We originally suggested (Bibby et al., 2012) that

all-� protein targets larger than the 120-residue threshold then

tested could be suitable for the cluster-and-truncate approach

of AMPLE. Here, we demonstrate this to be true, with

unassisted decoys leading to the solution of a 213-residue

protein and contact-assisted models leading to the successful

solution of a 221-residue chain. To our knowledge, these are

the largest targets to be solved with search models derived

from ab initio structure decoys.

The availability of reliable contact restraints to aid MR with

ab initio models clearly widens the range of targets for which

AMPLE is a viable option for structure solution. The accuracy

of contact predictions is directly related to the number of

protein sequences deposited in sequence databases such as

UniProt (The UniProt Consortium, 2015), and thus will

benefit from the continuous growth of those databases.

Notably, this manuscript focused solely on globular proteins;

yet the AMPLE algorithm is equally well suited to coiled-coil

and transmembrane proteins (Thomas et al., 2015 and

unpublished data). Specific contact predictors for the latter

are available (Wang et al., 2011; Hopf et al., 2012; Yang et al.,

2013; Zhang et al., 2016) and future research will explore their

application to MR using AMPLE. In conclusion, the current

and future broadening of the target range tractable by

AMPLE through the use of evolutionary restraints during ab

initio modelling highlights the value of the software as an

effective alternative to experimental phasing approaches in

X-ray crystallography.

In summary, we confirm here that predicted contacts can

significantly improve ab initio model quality in a way that

directly impacts on structure solution by MR. Our novel mode

of uniting general and �-structure-specific contact predictions

brings further tangible model improvements to the particu-

larly difficult �-rich protein targets. All of these methodo-

logical advances have immediate benefits for crystallographers

facing targets with novel or divergent folds which cannot be

addressed by conventional MR. AMPLE proves to be an

efficient framework for rendering these contact-assisted

decoys into search-model ensembles, with truncation and

extensive sampling remaining key to success. Future inevitable

expansion of sequence databases and predictable improve-

ments in contact-prediction software will undoubtedly extend

the reach of MR with ab initio models still further.
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Seemayer, S., Gruber, M. & Söding, J. (2014). Bioinformatics, 30,

3128–3130.
Shapovalov, M. V. & Dunbrack, R. L. Jr (2007). Proteins, 66, 279–303.
Sheldrick, G. M. (2010). Acta Cryst. D66, 479–485.
Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. (1997). J. Mol.

Biol. 268, 209–225.
Skwark, M. J., Abdel-Rehim, A. & Elofsson, A. (2013). Bioinfor-

matics, 29, 1815–1816.
Skwark, M. J., Raimondi, D., Michel, M. & Elofsson, A. (2014). PLoS

Comput. Biol. 10, e1003889.
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