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X-ray serial microcrystallography involves the collection and merging of frames

of diffraction data from randomly oriented protein microcrystals. The number of

diffracted X-rays in each frame is limited by radiation damage, and this number

decreases with crystal size. The data in the frame are said to be sparse if too few

X-rays are collected to determine the orientation of the microcrystal. It is

commonly assumed that sparse crystal diffraction frames cannot be merged,

thereby setting a lower limit to the size of microcrystals that may be merged with

a given source fluence. The EMC algorithm [Loh & Elser (2009), Phys. Rev. E,

80, 026705] has previously been applied to reconstruct structures from sparse

noncrystalline data of objects with unknown orientations [Philipp et al. (2012),

Opt. Express, 20, 13129–13137; Ayyer et al. (2014), Opt. Express, 22, 2403–2413].

Here, it is shown that sparse data which cannot be oriented on a per-frame basis

can be used effectively as crystallographic data. As a proof-of-principle,

reconstruction of the three-dimensional diffraction intensity using sparse data

frames from a 1.35 kDa molecule crystal is demonstrated. The results suggest

that serial microcrystallography is, in principle, not limited by the fluence of the

X-ray source, and collection of complete data sets should be feasible at, for

instance, storage-ring X-ray sources.

1. Introduction

Serial microcrystallography was developed as a way of taking

advantage of the high fluence provided by X-ray free electron

lasers to image small microcrystals (ca 1 mm3 or smaller)

(Chapman et al., 2011; Boutet et al., 2012). Due to the short

time duration of the pulse (<50 fs), the principle of ‘diffraction

before destruction’ is applicable, where the pulse outruns most

of the radiation damage. This allows the capture of relatively

damage-free snapshot diffraction patterns. A large number of

these patterns are captured by flowing a stream of crystals past

the beam. Enough photons are scattered in this interval to

allow indexing algorithms (White et al., 2012) to determine the

orientation of individual frames and to generate the three-

dimensional intensity distribution of the diffraction.

This approach was reproduced at a synchrotron source

(Stellato et al., 2014) with larger crystals (135 mm3) and the

same indexing method. However, with micron-sized crystals,

around 100 times fewer photons would be scattered. Another

possible application would be in the imaging of two-dimen-

sional membrane protein crystals, given their weak diffraction

(Feld & Frank, 2014). In both cases, there might be too few
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photons in a single frame to allow indexing of Bragg spots. The

data may have the sparse nature of Philipp et al. (2012) and

Ayyer et al. (2014), where it is impossible to recover the

orientation of a single frame by itself. Fortunately, as in those

cases, we show that one can apply the EMC algorithm to

crystal diffraction (Loh & Elser, 2009) to simultaneously

assign orientations probabilistically and solve for the three-

dimensional intensities. Other algorithmic methods have been

used (Fung et al., 2008; Shneerson et al., 2008; Kassemeyer et

al., 2013; Xu et al., 2014) to assign orientations and extract the

three-dimensional structure from two-dimensional snap-

shot(s), but they have been applied to much higher signal

images.

To simulate the sparse data frame conditions from a 1 mm3

crystal at a storage-ring synchrotron source, we have

performed an experiment with a large 400 mm crystal using a

standard laboratory X-ray source with diffraction images

recorded at a high frame rate. Each frame was acquired with

the crystal in an arbitrary orientation around a single rotation

axis. Even with an average signal level as low as 48 photons per

frame (4.8 � 10�4 photons per pixel), we demonstrate

successful recovery of orientation about the axis of rotation

and reconstruction of three-dimensional intensities. We

compare our reconstruction with a high-fluence data set where

the orientations were recorded. We also examine the effect of

background scatter on the quality of the reconstruction and

the ability to recover orientations. The ability of the EMC

algorithm to recover the three-dimensional intensities from

sparse data, albeit from a large crystal, is an important step

towards the development of EMC-based serial protein crys-

tallography.

2. Reconstruction algorithm

A slightly modified version of the EMC algorithm (Loh &

Elser, 2009) was used to iteratively assign orientations and

reconstruct the three-dimensional intensity distribution. One

feature of this technique is that all regions of reciprocal space

are treated equally. No particular preference is given to reci-

procal lattice points. This is in contrast with the approach

taken by indexing algorithms which emphasize the Bragg spots

to the extent of ignoring the diffuse scattering. In the case of

sparse data, most Bragg spots will produce no photons and

some of the photons could be from non-Bragg background,

making this approach impractical. A short review of the

algorithm is given below.

The EMC algorithm has three steps in each iteration

(expand, maximize and compress). Firstly, the space of avail-

able orientations is discretized to a finite number of angles.

The expand and compress steps convert to and from the three-

dimensional intensity distribution and the expected intensity

at the detector in each of these orientations, which we call

‘views’. This is done using linear interpolation and the fact that

detector pixels lie along the Ewald sphere. The maximize step

uses the data frames to update the views using expectation-

maximization, as described below.

Once the views have been obtained for each discrete

orientation, the probability of a frame being generated by a

view is calculated by assuming Poisson statistics for the

number of photons recorded given an intensity. Thus, if the

intensity at pixel t in view r is Wrt, the probability P of frame d

with Kdt photons at pixel t being generated by view r is given

by

Pdr ¼

Q
t exp �Wrtð ÞW

Kdt
rtP

r

Q
t exp �Wrtð ÞW

Kdt
rt

� � ; ð1Þ

where the Kdt! term has been omitted as it cancels out between

the numerator and the denominator. Using these probabilities,

the likelihood of maximizing an updated view W 0
rt is given by

W 0
rt ¼

P

d

Pdr Kdt

P

d

Pdr

: ð2Þ

This intuitive update rule ends up being just the weighted

mean over the data frames, with the weights being the prob-

abilities calculated using the current model. These updated

views maximize the likelihood of generating the data, given

the probabilities Pdr calculated from the current model. The

expand–compress cycle is necessary to impose consistency

among different views by requiring that they come from a

common three-dimensional model.

2.1. Three-dimensional hkl space

One modification to the traditional algorithm is in the

choice of space for the three-dimensional intensity distribu-

tion. The standard choice is Fourier space, where the slice

representing the detector plane is the surface of a sphere

passing through the origin (the Ewald sphere). Here, for

reasons explained below, the best choice is hkl space, where

the three axes represent the fractional coordinates with

respect to the reciprocal unit cell. Thus, the reciprocal lattice

points lie on a cubic grid with integer spacing, regardless of the

unit-cell parameters. Unless the crystal has cubic symmetry,

the detector pixels will no longer lie on the surface of a sphere

but along some other surface. The pixel coordinates in this

space can be calculated by using the basis vectors to determine

the scaling and rotational transformation to the Ewald sphere

surface.

With our choice of hkl space, the Bragg peaks all map to a

cubic grid. Thus, while interpolating in the expand and

compress steps, symmetry-related Bragg peaks see the same

environment, which would not necessarily be the case if the

basis vectors did not lie along the grid axes. This is important,

because the maximize step is sensitive to slight variations

among these peaks caused by interpolation errors. These

errors are not a major factor in the case of non-Bragg intensity

distributions where the variation is smooth on a one-pixel

scale.

To define such a space, one needs to know the unit-cell

vectors. These can be determined from the (high-signal) angle-

averaged data, if not already known.
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2.2. Initial guess

As with any iterative algorithm, the initial-guess model

must be specified. In this case, once the mapping of pixels to

hkl space has been defined, the model is constructed by

placing a three-dimensional Gaussian of random height at

each lattice point. This cubic grid of random intensities is used

as the input for the first iteration. Other than this initial guess

and the use of hkl space, no other crystallographic symmetry is

assumed during the reconstruction.

2.3. Rotation group subset

In general, the set of views, r, is generated by sampling the

three-dimensional rotation group uniformly. This is done with

the help of unit quaternions. However, in cases where the

crystal is rotated about a single axis and the relative orienta-

tion of the axis with respect to the crystal basis vectors is

known, one can sample angles about just that axis. This was

done in this experiment, where the axis was determined from

the high-fluence data set using the XDS software (Kabsch,

2010).

3. Data collection

The sample studied was a 400 mm sized small-molecule single

crystal with chemical formula C78H120Mo2N6O (molecular

weight 1.35 kDa). It was mounted on the end of a glass fiber

attached to a goniometer head, which allowed the crystal to be

centered on the rotation axis. A rotation stage (Newport

URS100) was set to rotate continuously at 0.1� s�1 during data

collection. Although the angle of rotation was known for each

frame, it was not passed to the reconstruction algorithm. The

crystal was illuminated by a Mo K� beam generated by a

Rigaku RU-H3R rotating anode set to 30 kV and 40 mA.

Filtering was done using 200 mm of Zr foil to increase the

fraction of K� radiation. The X-rays were focused to a spot of

size 0.5� 0.5 mm using Ni-coated Franks mirrors 1 m from the

sample, with a beam convergence of 1 mrad and an intensity of

106 photons s�1. The data were recorded using an MMPAD

detector (Tate et al., 2013) at a distance of 37 mm from the

sample. Two data sets were collected, one with low fluence at

10 ms per frame and the other with high fluence at 500 ms per

frame. The low-fluence data set was taken in groups of 1000

consecutive frames, with a time delay between sets to allow the

frames to be written to disk.

The data were then thresholded and photon counts were

obtained using a procedure similar to that employed by Ayyer

et al. (2014). In the low-fluence data set there were 4.3 million

frames with an average of 3.2 photons per frame. Since the

crystal rotated only 10�3 � between two successive frames,

multiple data sets were prepared by combining successive

frames within a batch. Table 1 lists the details of the different

data sets. Fig. 1 shows the first six frames from the 48 photons

per frame data set.

Fig. 2 shows the angle-averaged pattern obtained by

summing over all data frames. The radial streaks near the

Bragg spots are caused by the polychromaticity of the beam.

The arcs near the rotation axis are caused by the these streaks

intersecting the curved Ewald sphere. Since the exact shape of

the arc is very sensitive to the rotation axis, a region of the

image within 11 pixels of the rotation axis was not used in the

calculation of Pdr.

4. Results

The crystal analyzed had a body-centered cubic (b.c.c.) unit

cell with a lattice constant of 21.47 Å in space group I43d. The

unit-cell parameters were taken as a given and used to
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Figure 1
Six successive data frames obtained by collapsing 15 successive low-
fluence frames together. Each collapsed frame has 48 photons on average.
The locations of the photons have been emphasized to improve visibility.
Although the crystal rotates slightly between these frames (0.015�), this
rotation is below the instrumental divergence in the apparatus. At high
fluence per frame, each of these frames would look similar. The observed
difference between these frames, and the lack of any discernible Bragg
pattern, show the data to be well within the sparse-data regime.

Table 1
Properties of various data sets generated by collapsing successive frames.

Before collapsing, the frames were in batches of 1000 contiguous frames with
gaps. There were also some rejected frames which had a very high photon
count caused by incorrect detector offsets. The number of iterations required
for convergence depends upon the random start, so the numbers given here
are approximate and are used to highlight the trend.

Collapsed
frames

No. of collapsed
frames

Photons
per frame

Iterations
to converge

1 4 321 197 3.22
10 434 420 32.00
15 290 541 47.85 2200
100 44 221 314.41 400
200 22 321 622.88 250



generate the mapping to hkl space (x2.1). The high-fluence

data set with known orientations was used to generate a

reference three-dimensional intensity model. This was

compared with the reconstructions from different low-fluence

data sets by comparing the Patterson maps, which were

generated as follows. First, the intensities were integrated in a

small sphere about every hkl point. The three-dimensional hkl

grid of intensities was then inverse Fourier transformed to

generate the electron-density auto-correlation function, which

is the Patterson map. Fig. 3 shows a comparison of the maps

for one particular data set (48 photons per frame). For a

quantitative comparison, we have calculated an R factor

between the Fourier amplitudes of the low- and high-fluence

reconstructions (Rhigh-low), shown in Fig. 4. This quantity was

calculated as follows

Rhigh-low ¼

P
Fhkl;high � Fhkl;low

�� ��
P

Fhkl;high

�� �� ; ð3Þ

where Fhkl = (Ihkl)
1/2 and Ihkl refers to the integrated intensity

at Bragg peak (h, k, l). We observe that, at low resolutions, this

R factor is near 0.14. At high q [= (h2 + k2 + l2)1/2], the lack of

good statistics in the high-fluence data set leads to a large

value. This is illustrated in Fig. 4 by the dashed line, which

represents the mean number of photons per peak in a given

resolution shell.

4.1. Dependence on photons per frame

As mentioned in x3, the crystal is rotated by 10�3 � over one

frame. This allows us to collapse successive frames, as they

come from almost identical orientations. Using this method,

we could study the effect of the number of photons per frame

on reconstruction quality while keeping other parameters the
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Figure 2
Angle-averaged pattern produced by summing over all frames in the low-
fluence data set. The direct beam goes through the center of the beamstop
and the rotation axis is vertical. Note the radial streaks caused by
polychromaticity of the beam due to Bremsstrahlung. These streaks form
arcs near the vertical rotation axis due to the curvature of the Ewald
sphere. The white gaps in the image are the spaces between the six
detector tiles in the 2 � 3 tiled array of the MMPAD detector.

Figure 3
A comparison of slices through the three-dimensional Patterson maps generated from the high-fluence data set of known orientation and a low-fluence
(48 photons per frame) reconstruction. The map was 53� 53� 53 voxels in size and every fourth slice is shown here, with the slice number shown below
each pair.



same. One effect of decreasing the number of photons per

frame was that it took more iterations to reach convergence.

For less than 48 photons per frame, the reconstruction did not

converge at all. Above this threshold value, the reconstruction

quality was independent of the number of photons per frame.

However, it took many more iterations, as can be seen in Fig. 5

and Table 1. This is consistent with the observations in simu-

lations with speckle intensity patterns (Loh & Elser, 2009).

The threshold value itself is lower because of the different

distribution of the intensity in this case (concentrated in Bragg

peaks as opposed to large smooth speckles). While the situa-

tion might be affected by other factors, such as beam mono-

chromaticity and crystal homogeneity, the rate of convergence

will still be principally determined by the number of photons

per frame.

4.2. Addition of background

The large non-hydrated crystal that we used provided

relatively little background scattering compared with the

Bragg spots. To study the effect of uniform background on the

quality of the reconstruction, additional photon counts were

added, with a Poisson distribution of uniform mean, to each

data frame of the 314 photons per frame data set. Except in

the cases of extreme background, there is no effect on the

orientation recovery. The weak highest-resolution peaks are

lost as they are drowned out by the noise in the background.

This is an unavoidable aspect of crystallography.

To demonstrate the successful recovery of orientation at

different background levels, the ratio of average intensity per

voxel in the neighborhood of a Bragg point to the average

intensity in the diffuse region is plotted versus reciprocal

length, q, in Fig. 6. If this ratio is close to 1, the Bragg peaks do

not stand out over the background. As the plot shows, even

with high background, the strong low-resolution peaks are

successfully recovered. However, as expected, the weak high-

resolution peaks are lost.

4.3. Computational details

The reconstruction was performed on a single machine

(Intel Xeon E5-2640 @ 2.00 GHz with 128GB RAM running

Scientific Linux) and took around 15 s per iteration using
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Figure 4
Plot showing Rhigh-low as a function of spatial frequency q. This quantity
(defined in x4) is calculated by comparing a low-fluence reconstruction
with the high-fluence assembly using the known orientations. The three
different reconstructed data sets mentioned in Table 1 have been plotted.
The dashed line represents the mean number of photons per Bragg peak
as a function of q for the high-fluence data set.

Figure 5
A plot showing the difference between successive iterates as a function of
iteration number. The units on the logarithmic vertical are arbitrary; for
reference, the lower limit corresponds to the floating-point precision of
the computation. Two data sets are shown, with 15 collapsed frames
(48 photons per frame) and 200 collapsed frames (623 photons per
frame). The sparser data set takes much longer to converge and the slope
of the curve in the last few iterations is strongly related to the number of
signal photons per frame.

Figure 6
Plot of the Bragg to diffuse intensity ratio as a function of spatial
frequency q for various amounts of added photons to simulate
background. A high ratio indicates that the orientations have been
correctly identified and most of the intensity is in Bragg peaks, whereas a
ratio near 1 would mean that the peaks are not resolved over background.
There were 314 photons per frame in the base data set. Even with 400%
background, the low-resolution peaks were resolved, as seen in the
1256 photons per frame plot.



20 cores. The three-dimensional hkl grid was chosen to have a

cubic lattice constant of 10 voxels. The detector geometry then

meant that the grid was 366 � 366 � 366 voxels in size. The

initial model was generated by placing a three-dimensional

Gaussian of random height and width 2 voxels centered at

each reciprocal lattice point satisfying the b.c.c. selection rule

(h + k + l = even). A similar procedure was performed during

peak integration, when the values in a sphere of radius

2 voxels around each peak were summed to calculate the

Bragg intensity.

Since the rotation axis with respect to the crystal axes was

taken to be a given, 1150 (’ � � 366) equally spaced orien-

tations were sampled about that axis.

We consistently observed that, if the algorithm converged, it

produced very similar maps. Thus, convergence was taken to

be an indicator of a successful reconstruction. Here, iterative

convergence occurs when the iterate stops changing from one

iteration to the next. Some convergence plots are shown in

Fig. 5.

5. Conclusions

We have shown that the three-dimensional diffraction inten-

sity distribution can be calculated from a large number of

sparse data frames, each with unknown orientation. This result

bodes well for the possibility of performing serial crystal-

lography with micron-sized or smaller microcrystals at

synchrotron sources. Complications will no doubt arise when

the method is applied to protein crystals of decreasing size and

an additional degree of rotational freedom, as we intend to do

in follow-up studies. Still, it is promising that successful

reconstruction of the three-dimensional intensities has been

shown for a signal level as low as 48 photons per frame.

We also observe that the addition of relatively high levels of

uniform background (400%) does not affect orientation

recovery. This is important, as some base level of background

scattering is unavoidable with protein crystals due to the

solvent internal to the crystal. As is the case in all protein

crystallography experiments, the background reduces the

resolution as higher order peaks are drowned out. Reducing

the background requires minimizing the amount of material in

the beam path. Fortunately, it is possible to reduce the back-

ground to insignificant levels by appropriate X-ray optics,

vacuum paths and graphene windows surrounding the crystal

stream (Wierman et al., 2013). For example, one can envision

flowing a filtered set of uniformly sized microcrystals down a

minimally sized tube equipped with graphene X-ray windows

in an otherwise totally vacuum environment. If the exposure

times are longer, fast-framing detectors (Koerner & Gruner,

2011; Johnson et al., 2014) can be used to restrict artificially the

net degree of angular diffusion over an exposure.

One feature of the serial crystallography experiment not

replicated here is the collection of data from all orientations in

three dimensions. Reconstruction from the full rotation group

was studied in simulations by Loh & Elser (2009) for aperiodic

structures with speckle intensity distributions. There, it was

shown that the number of photons per frame required for

successful reconstruction grows only logarithmically with the

number of orientational samples. Although the total number

of photons required for a complete data set with a good signal-

to-noise ratio and good resolution will be higher than what

was collected here, with the fluence available at third-

generation X-ray sources one should be able to collect a

complete data set of similarly sparse nature with micron-sized

crystals. This suggests that sub-micron room-temperature

serial microcrystallography should be feasible. Experiments to

examine this prediction will, no doubt, be performed.
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